Skip to main content

Advertisement

Log in

RGD peptide immobilized on TiO2 nanotubes for increased bone marrow stromal cells adhesion and osteogenic gene expression

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Recently, TiO2 nanotube layers are widely used in orthopedics and dental applications because of their good promotion effect on bone cells. Furthermore, peptide sequences such as arginine–glycine–aspartic acid are used to modify Ti implant for binding to cell surface integrins through motif. In this study, a cellular adhesive peptide of arginine–glycine–aspartic acid–cysteine (RGDC) was immobilized onto anodized TiO2 nanotubes on Ti to examine its in vitro responses on rat bone marrow stromal cells (BMSCs). Materials were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy techniques. High-resolution C1s scans suggested the presence of RGDC on the surface and SEM images confirmed the nanotubes were not destroyed after modification. BMSCs adhesion and osteogenic gene expression were detected in TiO2 nanotube layers with and without RGDC modification by fluorescence microscopy, confocal laser scanning microscopy, SEM, and realtime polymerase chain reaction (Real-time PCR). Results showed that the TiO2 nanotube layers immobilized with RGDC increased BMSCs adhesion compared to nonfunctionalized nanotubes after 4 h of cultivation. Furthermore, the osteogenic gene expression of BMSCs was dramatically enhanced on the TiO2 nanotube layers immobilized with RGDC (10 mM) compared to the TiO2 nanotube layers immobilized with RGDC (1 mM) and non-functionalized anodized Ti. Our results from in vitro study provided evidence that Ti anodized to possess nanotubes and then further functionalized with RGDC should be further studied for the design of better biomedical implant surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Linder L, Carlsson A, Marsal L, Bjursten LM, Brånemark PI. Clinical aspects of osseointegration in joint replacement. A histological study of titanium implants. J Bone Joint Surg Br. 1988;70:550–5.

    CAS  Google Scholar 

  2. Avila G, Misch K, Galindo-Moreno P, Wang HL. Implant surface treatment using biomimetic agents. Implant Dent. 2009;18:17–26.

    Article  Google Scholar 

  3. Nishimoto SK, Nishimoto M, Park SW, Lee KM, Kim HS, Koh JT, Ong JL, Liu Y, Yang Y. The effect of titanium surface roughening on protein absorption, cell attachment, and cell spreading. Int J Oral Maxillofac Implant. 2008;23:675–80.

    Google Scholar 

  4. Mendonça G, Mendonça DB, Aragão FJ, Cooper LF. Advancing dental implant surface technology: from micron - to nanotopography. Biomaterials. 2008;29:3822–35.

    Article  Google Scholar 

  5. Oh S, Daraio C, Chen LH, Pisanic TR, Finones RR, Jin S. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J Biomed Mater Res A. 2006;78:97–103.

    Google Scholar 

  6. Bjursten LM, Rasmusson L, Oh S, Smith GC, Brammer KS, Jin S. Titanium dioxide nanotubes enhance bone bonding in vivo. J Biomed Mater Res A. 2010;92:1218–24.

    Google Scholar 

  7. Oh S, Brammer KS, Li YS, Teng D, Enqler AJ, Chien S, Jin S. Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci USA. 2009;106:2130–5.

    Article  CAS  Google Scholar 

  8. Yu WQ, Jiang XQ, Zhang FQ, Xu L. The effect of anatase TiO2 nanotube layers on MC3T3–E1 preosteoblast adhesion, proliferation, and differentiation. J Biomed Mater Res Part A. 2010;94:1012–22.

    Google Scholar 

  9. Ruoslahti E, Pierschbacher MD. Arg-Gly-Asp: a versatile cell recognition signal. Cell. 1986;44:517–8.

    Article  CAS  Google Scholar 

  10. Porté-Durrieu MC, Labrugère C, Villars F, Lefebvre F, Dutoya S, Guette A. Development of RGD peptides grafted onto silica surfaces: XPS characterization and human endothelial cell interactions. J Biomed Mater Res. 1999;46:368–75.

    Article  Google Scholar 

  11. Arnold Marco, Ada Cavalcanti-Adam Elisabetta, Glass Roman. Activation of Integrin Function by nanopatterned adhesive Interfaces. Chem Phys Chem. 2004;5:383–8.

    Article  CAS  Google Scholar 

  12. Xiao SJ, Textor M, Spencer ND, Wieland M, Keller B, Sigrist H. Immobilization of the cell-adhesive peptide Arg-Gly-Asp-Cys (RGDC) on titanium surfaces by covalent chemical attachment. J Mater Sci Mater Med. 1997;8:867–72.

    Article  CAS  Google Scholar 

  13. Wang D, Ji J, Sun Y, Shen JC, Feng LX, Elisseeff JH. In situ immobilization of proteins and RGD peptide on polyurethane surfaces via poly(ethylene oxide) coupling polymers for human endothelial cell growth. Biomacromolecules. 2002;3:1286–95.

    Article  CAS  Google Scholar 

  14. Schliephake H, Scharnweber D, Dard M, Rossler S, Sewing A, Meyer J, Hoogestraat D. Effect of RGD peptide coating of titanium implants on peri-implant bone formation in the alveolar crest. An experimental pilot study in dogs. Clin Oral Implant Res. 2002;13:312–9.

    Article  Google Scholar 

  15. Secchi AG, Grigoriou V, Shapiro IM. RGDS peptides immobilized on titanium alloy stimulate bone cell attachment, differentiation and confer resistance to apoptosis. J Biomed Mater Res A. 2007;83:577–84.

    CAS  Google Scholar 

  16. Kim HS, Yang Y, Koh JT, Lee KK, Lee KM, Park SW. Fabrication and characterization of functionally graded nano-micro porous titanium surface by anodizing. J Biomed Mater Res B Appl Biomater. 2009;88:427–35.

    Google Scholar 

  17. Swan EE, Popat KC, Desai TA. Peptide-immobilized nanoporous alumina membranes for enhanced osteoblast adhesion. Biomaterials. 2005;26:1969–76.

    Article  Google Scholar 

  18. Balasundaram Ganesan, Yao Chang, Thomas J. Webster. TiO2 nanotubes functionalized with regions of bone morphogenetic protein-2 increases osteoblast adhesion. J Biomed Mater Res Part A. 2008;84:447–53.

    Article  Google Scholar 

  19. De Giglio E, Cometa S, Calvano CD, Sabbatini L, Zambonin PG, Colucci S, Benedetto AD, Colaianni G. A new titanium biofunctionalized interface based on poly(pyrrole-3-acetic acid) coating: proliferation of osteoblast-like cells and future perspectives. J Mater Sci Mater Med. 2007;18:1781–9.

    Article  CAS  Google Scholar 

  20. Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. 2003;24:4385–415.

    Article  CAS  Google Scholar 

  21. Kantlehner M, Schaffner P, Finsinger D, Meyer J, Jonczyk A, Diefenbach B, Nies B, Holzemann G, Goodman SL. Surface coating with cyclic RGD peptides stimulates osteoblast adhesion and proliferation as well as bone formation. Chem BioChem. 2000;1:107–14.

    CAS  Google Scholar 

  22. Jeschke B, Meyer J, Jonczyk A, Kessler H, Adamietz P, Meenen NM, Kantlehner M, Goepfert C, Nies B. RGD-peptides for tissue engineering of articular cartilage. Biomaterials. 2002;23:3455–63.

    Article  CAS  Google Scholar 

  23. Lebaron RG, Athanasiou KA. Extracellular matrix cell adhesion peptides: functional applications in orthopedic materials. Tissue Eng. 2000;6:85–103.

    Article  CAS  Google Scholar 

  24. van der Flier A, Sonnenberg A. Function and interactions of integrins. Cell Tissue Res. 2001;305:285–98.

    Article  Google Scholar 

  25. Takagi J. Structural basis for ligand recognition by RGD (Arg-Gly-Asp)-dependent integrins. Biochem Soc Trans. 2004;32:403–6.

    Article  CAS  Google Scholar 

  26. Massia SP, Hubbell JA. Covalent surface immobilization of Arg-Gly-Asp- and Tyr-Ile-Gly-Ser-Arg-containing peptides to obtain well-defined cell-adhesive substrates. Anal Biochem. 1990;187:292–301.

    Article  CAS  Google Scholar 

  27. Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21:667–81.

    Article  CAS  Google Scholar 

  28. Nelson M, Balasundaram G, Webster TJ. Increased osteoblast adhesion on Ti functionalized with KRSR. J Biomed Mater Res A. 2007;80:602–11.

    Google Scholar 

  29. Pallu S, Bareille R, Dard M, Kessler H, Jonczyk A, Vernizeau M, Amédée-Vilamitjana J. A cyclo peptide activates signaling events and promotes growth and the production of the bone matrix. Peptides. 2003;24:1349–57.

    Article  CAS  Google Scholar 

  30. Wang N, Butler JP, Ingber E. Mechanotransduction across the cell surface and through the cytoskeleton. Science. 1993;260:1124–7.

    Article  CAS  Google Scholar 

  31. Ruoslahti E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol. 1996;12:697–715.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Xiu-li Zhang (Oral Bioengineering Lab, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University) for assistance in experiments. This work was supported by Shanghai Leading Academic Discipline Project (Project Number: S30206) and Science and Technology committee of Shanghai (08DZ2271100, 1052nm04300, and 10JC1408600) and Shanghai Leadind Academic Discipline Project (T0202), and National Natural Science Foundation of China (81070866).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-qiang Zhang.

Additional information

Xin Cao and Wei-qiang Yu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, X., Yu, Wq., Qiu, J. et al. RGD peptide immobilized on TiO2 nanotubes for increased bone marrow stromal cells adhesion and osteogenic gene expression. J Mater Sci: Mater Med 23, 527–536 (2012). https://doi.org/10.1007/s10856-011-4479-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4479-0

Keywords

Navigation