Skip to main content

Advertisement

Log in

Microstructure and in vitro behaviour of 45S5 bioglass coatings deposited by high velocity suspension flame spraying (HVSFS)

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The high-velocity suspension flame spraying technique (HVSFS) was employed in order to deposit 45S5 bioactive glass coatings onto titanium substrates, using a suspension of micron-sized glass powders dispersed in a water + isopropanol mixture as feedstock. By modifying the process parameters, five coatings with different thickness and porosity were obtained. The coatings were entirely glassy but exhibited a through-thickness microstructural gradient, as the deposition mechanisms of the glass droplets changed at every torch cycle because of the increase in the system temperature during spraying. After soaking in simulated body fluid, all of the coatings were soon covered by a layer of hydroxyapatite; furthermore, the coatings exhibited no cytotoxicity and human osteosarcoma cells could adhere and proliferate well onto their surfaces. HVSFS-deposited 45S5 bioglass coatings are therefore highly bioactive and have potentials as replacement of conventional hydroxyapatite in order to favour osseointegration of dental and prosthetic implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cao W, Hench LL. Bioactive materials. Ceram Int. 1996;22:493–507.

    Article  CAS  Google Scholar 

  2. Hench LL. Bioceramics. J Am Ceram Soc. 1998;81:1705–28.

    Article  CAS  Google Scholar 

  3. Gross KA, Berndt CC. Biomedical application of apatites. In: Kohn MJ, Rakovan J, Hughes JM, editors. Phosphates: geochemical, geobiological, materials importance—reviews in mineralogy, geochemistry, vol. 48. Washington DC, USA: Mineralogical Society of America; 2002. p. 631–72.

    Google Scholar 

  4. Liu X, Chu PK, Ding C. Surface modification of titanium titanium alloys, and related materials for biomedical applications. Mater Sci Eng R. 2004;47:49–121.

    Article  Google Scholar 

  5. Sun L, Berndt CC, Gross KA, Kucuk A. Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review. J Biomed Mater Res. 2001;58:570–92.

    Article  CAS  Google Scholar 

  6. García C, Ceré S, Durán A. Bioactive coatings deposited on titanium alloys. J Non-Cryst Solids. 2006;352:3488–95.

    Article  Google Scholar 

  7. Kačiulis S, Mattogno G, Pandolfi L, Cavalli M, Gnappi G, Montenero A. XPS study of apatite-based coatings prepared by sol–gel technique. Appl Surf Sci. 1999;151:1–5.

    Article  Google Scholar 

  8. Gyorgy E, Grigorescu S, Socol G, Mihailescu IN, Janackovic D, Dindune A, Kanepe Z, Palcevskis E, Zdrentu EL, Petrescu SM. Bioactive glass and hydroxyapatite thin films obtained by pulsed laser deposition. Appl Surf Sci. 2007;253:7981–6.

    Article  CAS  Google Scholar 

  9. Yang Y, Kim K-H, Ong JL. A review on calcium phosphate coatings produced using a sputtering process—an alternative to plasma spraying. Biomaterials. 2005;26:327–37.

    Article  CAS  Google Scholar 

  10. Trommer RM, Santos LA, Bergmann CP. Alternative technique for hydroxyapatite coatings. Surf Coat Technol. 2007;201:9587–93.

    Article  CAS  Google Scholar 

  11. Paital SR, Dahotre NB. Calcium phosphate coatings for bio-implant applications: materials performance factors, and methodologies. Mater Sci Eng R. 2009;66:1–70.

    Article  Google Scholar 

  12. de Groot K, Wolke JGC, Jansen JA. Calcium phosphate coatings for medical implants. Proc Inst Mech Eng H J Eng Med. 1998;212:137–47.

    Article  Google Scholar 

  13. Herman H, Sampath S, McCune R. Thermal spraying: current status and future trends. Mater Res Soc Bull. 2000;25(7):17–25.

    Article  CAS  Google Scholar 

  14. Sun L, Berndt CC, Khor KA, Cheang NH, Gross KA. Surface characteristics and dissolution behavior of plasma-sprayed hydroxyapatite coating. J Biomed Mater Res. 2002;62:228–36.

    Article  CAS  Google Scholar 

  15. Dyshlovenko S, Pawlowski L, Roussel P, Murano D, Le Maguer A. Relationship between plasma spray operational parameters and microstructure of hydroxyapatite coatings and powder particles sprayed into water. Surf Coat Technol. 2006;200:3845–55.

    Google Scholar 

  16. Dyshlovenko S, Pawlowski L, Pateyron B, Smurov I, Harding JH. Modelling of plasma particle interactions and coating growth for plasma spraying of hydroxyapatite. Surf Coat Technol. 2006;200:3757–69.

    Article  CAS  Google Scholar 

  17. Heimann RB. Thermal spraying of biomaterials. Surf Coat Technol. 2006;201:2012–9.

    Article  CAS  Google Scholar 

  18. Pierlot C, Pawlowski L, Tomaszek R, Dyshlovenko S, Bigan M. Interdependence of different properties of hydroxyapatite coatings and powders plasma sprayed into water. Chemom Intell Lab Syst. 2007;86:153–8.

    Article  CAS  Google Scholar 

  19. Dyshlovenko S, Pierlot C, Pawlowski L, Tomaszek R, Chagnon P. Experimental design of plasma spraying and laser treatment of hydroxyapatite coatings. Surf Coat Technol. 2006;201:2054–60.

    Article  CAS  Google Scholar 

  20. Yang C-W, Lee T-M, Lui T-S, Chang E. Effect of post vacuum heating on the microstructural feature and bonding strength of plasma-sprayed hydroxyapatite coatings. Mater Sci Eng C. 2006;26:1395–400.

    Article  Google Scholar 

  21. Lugscheider E, Knepper M, Nyland A. Characterization of thermal sprayed bioactive coatings. Colloids Surf B. 1996;6:1–7.

    Article  CAS  Google Scholar 

  22. Gabbi C, Cacchioli A, Locardi B, Guadagnino E. Bioactive glass coating: physicochemical aspects and biological findings. Biomaterial. 1995;16:515–20.

    Article  CAS  Google Scholar 

  23. Schrooten J, Helsen JA. Adhesion of bioactive glass coating to Ti6Al4V oral implant. Biomaterial. 2000;21:1461–9.

    Article  CAS  Google Scholar 

  24. Lee TM, Chang E, Wang BC, Yang CY. Characteristics of plasma-sprayed bioactive glass coatings on Ti–6A1–4V alloy: an in vitro study. Surf Coat Technol. 1996;79:170–7.

    Article  CAS  Google Scholar 

  25. Oliva A, Salerno A, Locardi B, Riccio V, Della Ragione F, Iardino P, Zappia V. Behaviour of human osteoblasts cultured on bioactive glass coatings. Biomaterial. 1998;19:1019–25.

    Article  CAS  Google Scholar 

  26. Foppiano S, Marshall SJ, Marshall GW, Saiz E, Tomsia AP. Bioactive glass coatings affect the behavior of osteoblast-like cells. Acta Biomater. 2007;3:765–71.

    Article  CAS  Google Scholar 

  27. Lopez-Estebana S, Saiz E, Fujino S, Oku T, Suganuma K, Tomsia AP. Bioactive glass coatings for orthopedic metallic implants. J Eur Ceram Soc. 2003;23:2921–30.

    Article  Google Scholar 

  28. Bolelli G, Lusvarghi L, Manfredini T, Siligardi C. Influence of the manufacturing process on the crystallization behavior of a CZS glass system. J Non-Cryst Solids. 2005;351:2537–46.

    Article  CAS  Google Scholar 

  29. Höland Wolfram. Biocompatible and bioactive glass-ceramics—state of the art and new directions. J Non-Cryst Solids. 1997;219:192–7.

    Article  Google Scholar 

  30. Killinger A, Kuhn M, Gadow R. High-velocity suspension flame spraying (HVSFS), a new approach for spraying nanoparticles with hypersonic speed. Surf Coat Technol. 2006;201:1922–9.

    Article  CAS  Google Scholar 

  31. Rauch J, Bolelli G, Killinger A, Gadow R, Cannillo V, Lusvarghi L. Advances in high velocity suspension flame spraying (HVSFS). Surf Coat Technol. 2009;203:2131–8.

    Article  CAS  Google Scholar 

  32. Gadow R, Killinger A, Rauch J. New results in high velocity suspension flame spraying (HVSFS). Surf Coat Technol. 2008;202:4329–36.

    Article  CAS  Google Scholar 

  33. Bolelli G, Rauch J, Cannillo V, Killinger A, Lusvarghi L, Gadow R. Investigation of high-velocity suspension flame sprayed (HVSFS) glass coatings. Mater Lett. 2008;62:2772–5.

    Article  CAS  Google Scholar 

  34. Cannillo V, Pierli F, Sampath S, Siligardi C. Thermal and physical characterisation of apatite/wollastonite bioactive glass–ceramics. J Eur Ceram Soc. 2007;27:4575–88.

    Article  Google Scholar 

  35. Bolelli G, Cannillo V, Gadow R, Killinger A, Lusvarghi L, Rauch J. Microstructural and in vitro characterisation of high-velocity suspension flame sprayed (HVSFS) bioactive glass coatings. J Eur Ceram Soc. 2009;29:2249–57.

    Article  CAS  Google Scholar 

  36. Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–510.

    Article  CAS  Google Scholar 

  37. Bolelli G, Cannillo V, Gadow R, Killinger A, Lusvarghi L, Rauch J, Romagnoli M. Effect of the suspension composition on the microstructural properties of high velocity suspension flame sprayed (HVSFS) Al2O3 coatings. Surf Coat Technol. 2010;204:1163–79.

    Article  CAS  Google Scholar 

  38. Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564–83.

    Article  CAS  Google Scholar 

  39. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterial. 2006;27:2907–15.

    Article  CAS  Google Scholar 

  40. Giordano C, Sandrini E, Busini V, Chiesa R, Fumagalli G, Giavaresi G, Fini M, Giardino R, Cigada A. A new chemical etching process to improve endosseous implant osseointegration: In vitro evaluation on human osteoblast-like cells. Int J Artif Organs. 2006;29:772–80.

    CAS  Google Scholar 

  41. De Nardo L, Raffaini G, Ganazzoli F, Chiesa R. Surface modification of biomaterials: methods, analysis and applications. In: Williams R, editor. Metal surface oxidation and surface interactions. Cambridge: Woodhead; 2011. p. 102–42.

    Google Scholar 

  42. De Nardo L, Moscatelli M, Silvi F, Tanzi MC, Yahia LH, Farè, S. Chemico-physical modifications induced by plasma and ozone sterilizations on shape memory polyurethane foams. J Mater Sci Mater Med. 2010;21:2067–78.

    Google Scholar 

  43. Bolelli G, Cannillo V, Lusvarghi L, Manfredini T, Siligardi C, Bartuli C, Loreto A, Valente T. Plasma-sprayed glass-ceramic coatings on ceramic tiles: microstructure, chemical resistance and mechanical properties. J Eur Ceram Soc. 2005;25:1835–53.

    Article  CAS  Google Scholar 

  44. Gout R, Oelkers EH, Schoit J, Zwick A. The surface chemistry and structure of acid-leached albite: New insights on the dissolution mechanism of the alkali feldspars. Geochim Cosmochim Acta. 1997;61:3013–8.

    Article  CAS  Google Scholar 

  45. Gao X, Wachs IE. Structural characteristics and reactivity properties of highly dispersed Al2O3/SiO2 and V2O5/Al2O3/SiO2 catalysts. J Catal. 2000;192:18–28.

    Article  CAS  Google Scholar 

  46. Galeener FL, Mikkelsen JC Jr. Raman studies of the thermal oxide of silicon. Solid State Commun. 1981;37:719–23.

    Article  CAS  Google Scholar 

  47. Xie S, Iglesia E, Bell AT. Effects of hydration and dehydration on the structure of silica-supported vanadia species. Langmuir. 2000;16:7162–7.

    Article  CAS  Google Scholar 

  48. Murray CA, Gretyak TJ. Intrinsic surface phonons in amorphous silica. Phys Rev B Condens Matter Mater Phys. 1979;20:3368–87.

    Article  CAS  Google Scholar 

  49. Delbos C, Fazilleau J, Rat V, Coudert JF, Fauchais P, Pateyron B. Phenomena involved in suspension plasma spraying. Part 2: zirconia particle treatment and coating formation. Plasma Chem Plasma Process. 2006;26:393–414.

    Article  CAS  Google Scholar 

  50. Kaβner H, Vaβen R, Stöver D. Study on instant droplet and particle stages during suspension plasma spraying (SPS). Surf Coat Technol. 2008;202:4355–61.

    Article  Google Scholar 

  51. Fauchais P, Rat V, Coudert J-F, Etchart-Salas R, Montavon G. Operating parameters for suspension and solution plasma-spray coatings. Surf Coat Technol. 2008;202:4309–17.

    Article  CAS  Google Scholar 

  52. Oberste Berghaus J, Legoux J-G, Moreau C, Tarasi F, Chráska T. Mechanical and thermal transport properties of suspension thermal-sprayed alumina-zirconia composite coatings. J Therm Spray Technol. 2008;17:91–104.

    Article  Google Scholar 

  53. Pawlowski L. Suspension and solution thermal spray coatings. Surf Coat Technol. 2009;203:2807–29.

    Article  CAS  Google Scholar 

  54. Lefebvre L, Gremillard L, Chevalier J, Zenati R, Bernache-Assolant D. Sintering behaviour of 45S5 bioactive glass. Acta Biomater. 2008;4:1894–903.

    Article  CAS  Google Scholar 

  55. Lefebvre L, Chevalier J, Gremillard L, Zenati R, Thollet G, Bernache-Assolant D, Govin A. Structural transformations of bioactive glass 45S5 with thermal treatments. Acta Mater. 2007;55:3305–13.

    Article  CAS  Google Scholar 

  56. Lin C-C, Huang L-C, Shen P. Na2CaSi2O6–P2O5 based bioactive glasses. Part 1: elasticity and structure. J Non-Cryst Solids. 2005;351:3195–203.

    Article  CAS  Google Scholar 

  57. Dongmo E, Wenzelburger M, Gadow R. Analysis and optimization of the HVOF process by combined experimental and numerical approaches. Surf Coat Technol. 2008;202:4470–8.

    Article  CAS  Google Scholar 

  58. Poirier T, Planche MP, Landemarre O, Coddet C. Particles spreading phenomena in the case of glass thermal spraying. J Therm Spray Technol. 2008;17:564–73.

    Article  CAS  Google Scholar 

  59. Jiang X, Wan Y, Herman H, Sampath S. Role of condensates and adsorbates on substrate surface on fragmentation of impinging molten droplets during thermal spray. Thin Solid Films. 2001;385:132–41.

    Article  CAS  Google Scholar 

  60. Chandra S, Fauchais P. Formation of solid splats during thermal spray deposition. J Therm Spray Technol. 2009;18:148–80.

    Article  CAS  Google Scholar 

  61. Bolelli G, Rauch J, Cannillo V, Killinger A, Lusvarghi L, Gadow R. Microstructural and tribological investigation of high-velocity suspension Flame sprayed (HVSFS) Al2O3 coatings. J Therm Spray Technol. 2009;18:35–49.

    Article  CAS  Google Scholar 

  62. Srivatsan VR, Dolatabadi A. Simulation of particle-shock interaction in a high velocity oxygen fuel process. J Therm Spray Technol. 2006;15:481–7.

    Article  CAS  Google Scholar 

  63. Arcondéguy A, Grimaud A, Denoirjean A, Gasgnier G, Huguet C, Pateyron B, Montavon G. Flame-sprayed glaze coatings: effects of operating parameters and feedstock characteristics onto coating structures. J Therm Spray Technol. 2007;16:978–90.

    Article  Google Scholar 

  64. Gross KA, Saber-Samandari S, Heemann KS. Evaluation of commercial implants with nanoindentation defines future development needs for hydroxyapatite coatings. J Biomed Mater Res B. 2010;93:1–8.

    Google Scholar 

  65. Cao N, Dong J, Wang Q, Ma Q, Xue C, Li M. An experimental bone defect healing with hydroxyapatite coating plasma sprayed on carbon/carbon composite implants. Surf Coat Technol. 2010;205:1150–6.

    Article  CAS  Google Scholar 

  66. Valerio P, Pereira MM, Goes AM, Leite MF. The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. Biomaterial. 2004;25:2941–8.

    Article  CAS  Google Scholar 

  67. Vitale Brovarone C, Verné E, Appendino P. Macroporous bioactive glass-ceramic scaffolds for tissue engineering. J Mater Sci Mater Med. 2006;17:1069–78.

    Article  Google Scholar 

  68. Cuscó R, Guitián F, de Aza S, Artús L. Differentiation between hydroxyapatite and β-tricalcium phosphate by means of μ-Raman spectroscopy. J Eur Ceram Soc. 1998;18:1301–5.

    Article  Google Scholar 

  69. Khavryuchenko VD, Khavryuchenko OV, Lisnyak VV. Quantum chemical and spectroscopic analysis of calcium hydroxyapatite and related materials. J Solid State Chem. 2007;180:702–12.

    Article  CAS  Google Scholar 

  70. Agathopoulos S, Tulyaganov DU, Ventura JMG, Kannan S, Karakassides MA, Ferreira JMF. Formation of hydroxyapatite onto glasses of the CaO–MgO–SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives. Biomaterial. 2006;27:1832–40.

    Article  CAS  Google Scholar 

  71. Antonakos A, Liarokapis E, Leventouri T. Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterial. 2007;28:3043–54.

    Article  CAS  Google Scholar 

  72. Cerruti M, Bianchi CL, Bonino F, Damin A, Perardi A, Morterra C. Surface modifications of bioglass immersed in TRIS-buffered solution. A multitechnical spectroscopic study. J Phys Chem B. 2005;109:14496–505.

    Article  CAS  Google Scholar 

  73. Peitl O, Zanotto ED, Hench LL. Highly bioactive P2O5–Na2O–CaO–SiO2 glass-ceramics. J Non-Cryst Solids. 2001;292:115–26.

    Article  CAS  Google Scholar 

  74. Price N, Bendall SP, Frondoza C, Jinnah RH, Hungerford DS. Human osteoblast-like cells (MG63) proliferate on a bioactive glass surface. J Biomed Mater Res. 1997;37:394–400.

    Article  CAS  Google Scholar 

  75. Au AY, Au RY, Demko JL, McLaughlin RM, Eves BE, Frondoza CG. Consil® bioactive glass particles enhance osteoblast proliferation and selectively modulate cell signaling pathways in vitro. J Biomed Mater Res. 2010;94A:380–8.

    CAS  Google Scholar 

  76. Carinci F, Palmieri A, Martinelli M, Perrotti V, Piattelli A, Brunelli G, Arlotti M, Pezzetti F. Genetic portrait of osteoblast-like cells cultured on perioglas. J Oral Implant. 2007;33:327–33.

    Article  Google Scholar 

  77. Anselme K, Sharrock P, Hardouin P, Dard M. In vitro growth of human adult bone-derived cells on hydroxyapatite plasma-sprayed coatings. J Biomed Mater Res. 1997;34:247–59.

    Article  CAS  Google Scholar 

  78. Yang F, Xie Y, Li H, Tang T, Zhang X, Gan Y, Zheng X, Dai K. Human bone marrow-derived stromal cells cultured with a plasma sprayed CaO–ZrO2–SiO2 coating. J Biomed Mater Res B. 2010;95:192–201.

    Google Scholar 

  79. Gomes PS, Botelho C, Lopes MA, Santos JD, Fernandes MH. Evaluation of human osteoblastic cell response to plasma-sprayed silicon-substituted hydroxyapatite coatings over titanium substrates. J Biomed Mater Res. 2010;94:337–46.

    Google Scholar 

  80. Bhadang KA, Holding CA, Thissen H, McLean KM, Forsythe JS, Haynes DR. Biological responses of human osteoblasts and osteoclasts to flame-sprayed coatings of hydroxyapatite and fluorapatite blends. Acta Biomater. 2010;6:1575–83.

    Article  CAS  Google Scholar 

  81. Heimann RB. Design of novel plasma sprayed hydroxyapatite-bond coat bioceramic systems. J Therm Spray Technol. 1999;8:597–604.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

L. Altomare and L. De Nardo thank Dr. Monica Moscatelli and Prof. Silvia Farè for technical support in cell culture tests and acknowledge MIUR for FIRB grant “SAST”. L. De Nardo thanks Politecnico di Milano (Grant: 5 per Mille Junior) and the Italian Institute of Technology (IIT) for economic support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Cannillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altomare, L., Bellucci, D., Bolelli, G. et al. Microstructure and in vitro behaviour of 45S5 bioglass coatings deposited by high velocity suspension flame spraying (HVSFS). J Mater Sci: Mater Med 22, 1303–1319 (2011). https://doi.org/10.1007/s10856-011-4307-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4307-6

Keywords

Navigation