Skip to main content

Advertisement

Log in

Development of nanocomposite based on hydroxyethylmethacrylate and functionalized fumed silica: mechanical, chemico–physical and biological characterization

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this research work organic/inorganic nano composites were synthesized from poly-2-hydroxyethylmethacrylate and properly modified silica nanoparticles by in situ polymerization. In particular, fumed nanosilica was functionalized with methacryloylpropyltrimetoxy silane (MPTMS) in order to obtain a more homogeneous, reliable and mechanically performing nano composite. For comparison, nano composites with non functionalised silica were also prepared. Scanning electron microscopy was performed in order to visualize the effects of functionalization on the mode and state of dispersion. This analysis demonstrated that MPTMS grafted onto silica surface acts as an effective coupling agent and assures a good dispersion and distribution of nanoparticles as well as a strong nano particle/matrix interfacial adhesion. As a result of strong interactions occurring between phases, a pronounced increase of the glass transition temperature and mechanical parameters were recorded. Finally, these novel nano composites were seeded with murine fibroblast and human mesenchymal stem cells, and observed in time-lapse experiments proving an effective biological response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yu H, Yuan Q, Wang D, Zhao Y. Preparation of an ultraviolet-curable water-borne poly(urethane acrylate)/silica dispersion and properties of its hybrid film. J Appl Polym Sci. 2004;94:1347–52.

    Article  CAS  Google Scholar 

  2. Yong V, Hahn HT. Processing and properties of SiC7vinyl ester nanocomposite. Nanotechnology. 2004;15:1338–43.

    Article  CAS  Google Scholar 

  3. Lubeck C, Chin M, Doyle FM. Functionalization of a synthetic polymer to create inorganic/polymer hybrid materials. In: Kellar JJ, Herpfer MA, Moudgil BM, editors. Functional fillers and nanoscale minerals. Littleton: SME; 2003. p. 95–104.

    Google Scholar 

  4. Bréchet Y, Cavaille JYY, Chabert E, Chazeau L, Dendievel R, Flandin L, Gauthier C. Polymer based nanocomposites: effect of filler–filler and filler–matrix interactions. Adv Eng Mater. 2001;3(8):571–8.

    Article  Google Scholar 

  5. Hwu JYHM, Jiang GJ, Gao ZM, Xie W, Pan WP. The characterization of organic modified clay and clay-filled PMMA nanocomposite. J Appl Polym Sci. 2002;83:1702–10.

    Article  CAS  Google Scholar 

  6. Privalko VP, Shumsky VF, Privalko EG, Karaman VM, Walter R, Friedrich K, Zhang MQ, Rong MZ. Viscoelasticity and flow behaviour of irradiation grafted nano-inorganic particle filled polypropylene composites in the melt state. Sci Technol Adv Mater. 2002;3:111–6.

    Article  CAS  Google Scholar 

  7. Shinzato ST, Nakamura K, Kokubo T, Kitamura Y. Mechanical properties and osteoconductivity of new bioactive composites consisting of partially crystallized glass beads and poly(methyl methacrylate). J Biomed Mater Res. 2002;60:556–63.

    Article  CAS  Google Scholar 

  8. Van Zyl WE, Garcia M, Schrauwen BAG, Kooi BJ, De Hosson JTM, Verweij H. Hybrid polyamide/silica nanocomposites: synthesis and mechanical testing. Macromol Mater Eng. 2002;287:106–10.

    Article  Google Scholar 

  9. Tang H, Yan M, Ma X, Zhang H, Wang M, Yang D. Gas sensing behaviour of polyvinylpyrrolidone-modified ZnO nanoparticles for trimethylamine. Sens Actuators. 2006;B113:324.

    CAS  Google Scholar 

  10. Ignjatovic N, Plavsic M, Uskokovic D. Hydroxyapatite/poly-l-lactide (collagen) biocomposite with poly-l-lactide of different molecular weights. Adv Eng Mater. 2000;2:511–4.

    Article  Google Scholar 

  11. Liu Q, de Wijn J, van Blitterswijk C. Nano-apatite/polymer composites: mechanical and physicochemical characteristics. Biomaterials. 1997;18:1263–70.

    Article  CAS  Google Scholar 

  12. Sanchez C, Ribot F. Design of hybrid organic-inorganic materials synthesized via sol–gel chemistry. New J Chem. 1994;18:1007.

    CAS  Google Scholar 

  13. Avella M, Bondioli F, Cannillo V, Di Pace E, Errico ME, Ferrari AM, Fochere B, Malinconico M. PCL-based nano composite: influence of compatibilization on properties of PCL-silica nano composites. Composites Sci Technol. 2006;66(7–8):886–94.

    Article  CAS  Google Scholar 

  14. Antypov D, Elliott JA. Wang-landau simulation of polymer-nanoparticle mixtures. Macromolecules. 2008;41:7243–50.

    Article  CAS  Google Scholar 

  15. Pukánszky B. Interfaces and interphases in multicomponent materials: past, present, future. Eur Polym J. 2005;41(4):645–62.

    Article  Google Scholar 

  16. Guo Z, Pereira T, Choi O, Wang Y, Hahn HT. Surface functionalized alumina nano particle filled polymeric nano composites with enhanced mechanical properties. J Mater Chem. 2006;16:2800.

    Article  CAS  Google Scholar 

  17. Guo Z, Henry L, Palshin V, Podlaha EJ. Synthesis of poly(methyl methacrylate) stabilized colloidal zero-valence metallic nanoparticles. J Mater Chem. 2006;16:1772.

    Article  CAS  Google Scholar 

  18. Hayashi S, Fujiki K, Tsubokawa N. Grafting of hyper branched polymers onto ultrafine silica: post graft polymerization of vinyl monomers initiated by pendant initiating groups of polymer chains grafted onto the surface. React Funct Polym. 2000;46:193.

    Article  CAS  Google Scholar 

  19. Shenoy D, Wei F, Li J, Crasto C, Jones G, Dimarzio C, Sridhar S, Amiji M. Surface functionalization of gold nanoparticles using hetero-bifunctional poly (ethylene glycol) spacer for intracellular tracking and delivery. Int J Nanomedicine. 2006;1(1):51–7.

    Article  CAS  Google Scholar 

  20. Davidson CL, Erickson RL, Glasspoole EA. The influence of mixing micro filler to small-particle composite resin on wear, tensile strength, hardness and surface roughness. J Dent Res. 1989;68:489–90.

    Article  Google Scholar 

  21. Oliva A, Della Ragione F, Salerno A, Riccio V, Tartaro G, Cozzolino A, D’Amato S, Pontoni G, Zappia V. Biocompatibility studies on glass ionomer cements by primary cultures of human osteoblasts. Biomaterials. 1996;17:1351–6.

    Article  CAS  Google Scholar 

  22. Schiraldi C, D’Agostino A, Oliva D, Flamma F, De Rosa A, Apicella A, Aversa R, De Rosa M. Development of hybrid materials based on hydroxyethylmethacrylate as supports for improving cell adhesion and proliferation. Biomaterials. 2004;25(17):3645–53.

    Article  CAS  Google Scholar 

  23. D’Agostino A, Colella M, De Rosa M, De Rosa A, Lanza A, Schiraldi C. Chemico–physical characterization of hybrid composites based on hydroxylethylmethacrylate and nanosilica. J Polym Res. 2009;16(5):561–7.

    Article  Google Scholar 

  24. Wei Y, Jin D, Wei G, Yang D, Xu J. Novel organic–inorganic chemical hybrid fillers for dental composite materials. J Appl Polym Sci. 1998;70(9):1689–99.

    Article  CAS  Google Scholar 

  25. Xianyou Z, Xiaohong Z, Yong S. Interface between inorganic fillers and polymers properties and applications of dielectric materials. Prop Appl Dielectr Mater. 1994;1:340–3.

    Google Scholar 

  26. Bourgeat-Lami E, Espiard P, Guyot A. Poly(ethyl acrylate) latexes encapsulating nanoparticles of silica: 1. Functionalization and dispersion of silica. Polymer. 1995;36:4385.

    Article  CAS  Google Scholar 

  27. Oliva A, Passaro I, Di Pasquale R, Di Feo A, Criscuolo M, Zappia V, Della Ragione F, D’Amato S, Annunziata M, Guida L. Ex vivo expansion of bone marrow stromal cells by platelet-rich plasma: a promising strategy in maxillo-facial surgery. Int J Immunopathol Pharmacol. 2005;18:47–53.

    CAS  Google Scholar 

  28. Slater TF, Sawyer B, Strauli U. Studies on succinate–tetrazolium reductase systems III. Points of coupling of four different tetrazolium salts. Biochim Biophys Acta. 1963;77:383.

    Article  CAS  Google Scholar 

  29. Sandi G, Joachin H, Kizilel R, Seifert S, Carrado KA. In situ SAXS studies of the structural changes of polymer nano composites used in battery applications. Chem Mater. 2003;15:838.

    Article  CAS  Google Scholar 

  30. Zheng Y, Ning R. Effects of nanoparticles SiO2 on the performance of nano composites. Mater Lett. 2003;57:2940–4.

    CAS  Google Scholar 

  31. Huang HH, Wikes GL. Structure–property behaviour of new hybrid materials incorporating oligomeric species into sol-gel glasses. 3. Effect of acid content, tetraethoxysilane content, and molecular weight of poly(dimethylsiloxane). Macromolecules. 1987;20:1322.

    Article  CAS  Google Scholar 

  32. Huang HH, Wikes GL. Structure-property behaviour of new hybrid materials incorporating oligomeric poly(tetramethylene oxide) with inorganic silicates by a sol–gel process-3. Effect of oligomeric molecular weight. Polym Bull. 1987;18:455.

    Article  CAS  Google Scholar 

  33. Mascia L, Kioul A. Polyimide–silica hybrid materials by sol–gel processing. Polymer. 1995;36:3649.

    Article  CAS  Google Scholar 

  34. Huang ZH, Qiu KY. Preparation and thermal property of poly(methyl methacrylate)/silicate hybrid materials by the in-situ sol-gel process. Polymer Bulletin. 1995;35:607–13.

    Article  CAS  Google Scholar 

  35. Noell JLW, Wilkes GL, Mohanty DK, MacGrath JE. The preparation and characterization of new polyether ketone-tetraethylorthosilicate hybrid glasses by the sol–gel method. J Appl Polym Sci. 1990;40:1177–94.

    Article  CAS  Google Scholar 

  36. Mauritz KA, Ju R. Poly[(ether ether sulfone)-co-(ether sulfone)]/silicon oxide microcomposites produced via the sol–gel reaction for tetraethylorthosilicate. Chem Mater. 1994;6:2269.

    Article  CAS  Google Scholar 

  37. Huang ZH, Qiu KY. The effects of interactions on the properties of acrylic polymers/silica hybrid materials prepared by the in situ sol–gel process. Polymer. 1997;38(3):521–6.

    Article  CAS  Google Scholar 

  38. Pascual-Sanchez V, Martin-Martinez JM. Influence of the curing temperature in the mechanical and thermal properties of nanosilica filled epoxy resin coating. Macromol Symp. 2006;233:137–46.

    Article  CAS  Google Scholar 

  39. Furusawa K, Kimura Y, Tagawa TJ. Syntheses of composite polystyrene latices with silica particles in the core. J Colloid Interface Sci. 1986;109(1):69–76.

    Article  CAS  Google Scholar 

  40. Espiard P, Guyot A. Poly(ethyl acrylate) latexes encapsulating nanoparticles of silica: 2. Grafting process onto silica. Polymer. 1995;36:4391–5.

    Article  CAS  Google Scholar 

  41. Espiard P, Guyot Ph A, Perez J, Vigier G, David L. Poly(ethyl acrylate) latexes encapsulating nanoparticles of silica: 3. Morphology and mechanical properties of reinforced films. Polymer. 1995;36:4397–440.

    Article  CAS  Google Scholar 

  42. Tan F, Qiao X, Chen J, Wang H. Effects of coupling agents on the properties of epoxy-based electrically conductive adhesives. Int J Adhesion Adhesives. 2006;26(6):406–13.

    Article  CAS  Google Scholar 

  43. Shokoohi S. Silane coupling agents in polymer-based reinforced composites: a review. J Reinforc Plast Compos. 2008;27(5):473–85.

    Article  CAS  Google Scholar 

  44. Kim SH, Chung JW, Kang TJ, Kwak S, Suzuki T. Determination of the glass transition temperature of polymer/layered silicate nanocomposites from positron annihilation lifetime measurements. Polymer. 2007;48(14):4271–7.

    Article  CAS  Google Scholar 

  45. Thevenot P, Hu W, Tang L. Surface chemistry influences implant biocompatibility. Cur Top Med Chem. 2008;8:270–80.

    Article  CAS  Google Scholar 

  46. Rodriguez SN, Gocalves IC, Martins MCL, Barbosa MA, Ratner BD. Fibrinogen adsorbtion, platelet, adhesion, and activation on mixed hydroxyl-methyl-terminated self assembled monolayers. Biomaterials. 2006;27:5357–67.

    Article  Google Scholar 

Download references

Acknowledgment

We gratefully thank Prof. Adriana Oliva for the gift of aliquots of mesenchymal stem cells.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Emanuela Errico or Chiara Schiraldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Agostino, A., Errico, M.E., Malinconico, M. et al. Development of nanocomposite based on hydroxyethylmethacrylate and functionalized fumed silica: mechanical, chemico–physical and biological characterization. J Mater Sci: Mater Med 22, 481–490 (2011). https://doi.org/10.1007/s10856-010-4223-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4223-1

Keywords

Navigation