Skip to main content

Advertisement

Log in

The bioactivity and ion release of titanium-containing glass polyalkenoate cements for medical applications

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The ion release profiles and bioactivity of a series of Ti containing glass polyalkenoate cements. Characterization revealed each material to be amorphous with a T g in the region of 650–660°C. The network connectivity decreased (1.83–1.35) with the addition of TiO2 which was also evident with analysis by X-ray photoelectron spectroscopy. Ion release from cements were determined using atomic absorption spectroscopy for zinc (Zn2+), calcium (Ca2+), strontium (Sr2+), Silica (Si4+) and titanium (Ti4+). Ions such as Zn2+ (0.1–2.0 mg/l), Ca2+ (2.0–8.3 mg/l,) Sr2+ (0.1–3.9 mg/l), and Si4+ (14–90 mg/l) were tested over 1–30 days. No Ti4+ release was detected. Simulated body fluid revealed a CaP surface layer on each cement while cell culture testing of cement liquid extracts with TW-Z (5 mol% TiO2) produced the highest cell viability (161%) after 30 days. Direct contact testing of discs resulted in a decrease in cell viability of the each cement tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kates SL, Kates OS, Mendelson DA. Advances in the medical management of osteoporosis. Injury. 2007;38S3:S17–23.

    Article  Google Scholar 

  2. Henderson B, Nair SP. Hard labour: bacterial infection of the skeleton. Trends Microbiol. 2003;11(12):570–7.

    Article  CAS  Google Scholar 

  3. Wise DL, Trantolo DJ, Lewandrowski KU, Gresser JD, Cattaneo MV, Yaszemski MJ. Biomaterials engineering and devices: human applications. Orthopaedic, dental and bone graft applications, vol. 2. Louisville: Humana Press; 2000.

    Google Scholar 

  4. Khan RJK, MacDowell A, Crossman P, Keene GS. Cemented or uncemented hemiarthroplasty for displaced intracapsular fractures of the hip—a systemic review. Injury. 2002;33:13–7.

    Article  CAS  Google Scholar 

  5. Barrocas AM, Eskey CJ, Hirsch JA. Vertebral augmentation in osteoporotic fractures. Injury. 2007;38S3:S88–96.

    Article  Google Scholar 

  6. Soin S, Kapural L, Mekhail N. Imaging for percutaneous vertebral augmenation. Tech Reg Anesth Pain Man. 2007;11:90–4.

    Article  Google Scholar 

  7. Stanczyk M. Study on modelling of PMMA bone cement polymerisation. J Biomech. 2005;38(7):1397–403.

    Article  CAS  Google Scholar 

  8. Donkerwolcke M, Burny F, Muster D. Tissues and bone adhesives—historical aspects. Biomaterials. 1998;19(16):1461–6.

    Article  CAS  Google Scholar 

  9. Orr J, Dunne N. Measurement of shrinkage stresses in PMMA bone cement. Appl Mech Mater. 2004;1–2:127–32.

    Article  Google Scholar 

  10. Dunne NJ, Orr JF. Thermal characteristics of curing acrylic bone cement. ITBM-RBM. 2001;22(2):88–97.

    Article  Google Scholar 

  11. Bergmann G, Graichen F, Rohlmann A, Verdonschot N, van Lenthe GH. Frictional heating of total hip implants. Part 2: finite element study. J Biomech. 2001;34(4):429–35.

    Article  CAS  Google Scholar 

  12. Petty W. The effect of methyl methacrylate on chemotaxis of polymorphonuclear leukocytes. J Bone Joint Surg. 1978;60 -A(4):493–7.

    Google Scholar 

  13. Santin M, Motta A, Borzachiello A. Effect of PMMA cement radical polymerization on the inflammatory response. J Mater Sci Mater Med. 2004;15:1175–80.

    Article  CAS  Google Scholar 

  14. Ambard AJ, Mueninghoff L. Calcium phosphate cement: review of mechanical and biological properties. J Prosthodont. 2006;15(5):321–8.

    Article  Google Scholar 

  15. Miyamoto Y, Ishikawa K, Takechi M, Toh T, Yoshida Y, Nagayama M, Kon M, Asaoka K. Tissue response to fast setting calcium phosphate cements in bone. J Biomed Mater Res. 1997;37(4):457–64.

    Article  CAS  Google Scholar 

  16. Ishikawa K, Takagi S, Chow LC, Ishikawa Y. Properties and mechanisms of fast setting calcium phosphate cements. J Mater Sci Mater Med. 1995;6:528–33.

    Article  CAS  Google Scholar 

  17. Bohner M. Physical and chemical aspects of calcium phosphates used in spinal surgery. Eur Spine J. 2001;10:S114–21.

    Article  Google Scholar 

  18. Hatton PV, Hurrell-Gillingham K, Brook IM. Biocompatability of glass ionomer bone cements. J Dent. 2006;34:598–601.

    Article  CAS  Google Scholar 

  19. DeBruyne MAA, DeMoor RJG. The use of glass ionomer cements in both conventional and surgical endodontics. Int Endod J. 2004;37:91–104.

    Article  CAS  Google Scholar 

  20. Byon E, Moon S, Cho S-B, Jeong C-Y, Jeong Y, Sul Y-T. Electrochemical property and apatite formation of metal ion implanted titanium for medical implants. Surf Coat Technol. 2005;200(1–4):1018–21.

    Article  CAS  Google Scholar 

  21. González JEG, Mirza-Rosca JC. Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications. J Electroanal Chem. 1999;471(2):109–15.

    Article  Google Scholar 

  22. Takadama H, Kim H-M, Kokubo T, Nakamura T. XPS study of the process of apatite formation on bioactive Ti-6Al-4 V alloy in simulated body fluid. Sci Technol Adv Mater. 2001;2:389–96.

    Article  CAS  Google Scholar 

  23. Kokubo T, Kim H-M, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials. 2003;24:2161–75.

    Article  CAS  Google Scholar 

  24. Marie PJ. Strontium ranelate; a novel mode of action optimizing bone formation and resorption. Osteoporos Int. 2005;16:S7–10.

    Article  CAS  Google Scholar 

  25. Marie PJ. Strontium ranelate: new insights into its dual mode of action. Bone. 2001;40(5):S5–8.

    Article  Google Scholar 

  26. Yamaguchi M, Ma ZJ. Role of endogenous zinc in the enhancement of bone protein synthesis associated with bone growth of newborn rats. J Bone Miner Metab. 2001;19:38–44.

    Article  Google Scholar 

  27. Yamaguchi M, Ma ZJ. Stimulatory effect of zinc on Deoxyribonucleic acid synthesis in bone growth of newborn rats:enhancement with zinc and insulin like growth factor-I. Calcif Tissue Int. 2001;69:158–63.

    Article  Google Scholar 

  28. Devine A, Dick IM, Heal SJ, Criddle RA, Prince RL. A 4-year follow up study of the effects of calcium supplementation on bone density in elderly postmenopausal women. Osteoporos Int. 1997;7:23–8.

    Article  CAS  Google Scholar 

  29. Wren AW, Boyd D, Thornton R, Cooney JC, Towler MR. Antibacterial properties of a tri-sodium citrate modified glass polyalkenoate cement. J Biomed Mater Res B Appl Biomater. 2009;90-B(2):700–9.

    Google Scholar 

  30. Sawai J. Quantative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods. 2003;54:177–82.

    Article  CAS  Google Scholar 

  31. Wren AW, Kidari A, Cummins NM, Towler MR. A spectroscopic investigation into the setting and mechanical properties of titanium containing glass ionomer cements. J Mater Sci Mater Med. 2010. doi: 10.1007/s10856-010-4089-2.

  32. Wren AW, Laffir FR, Kidari A, Towler MR. The structural role of titanium in Ca-Sr-Zn-Si/Ti glasses for medical applications. J Non-Cryst Solids; 2010 (Submitted).

  33. Serra J, Gonzalez P, Liste S, Chiussi S, Leon B, Perez-amor M, Ylanen HO, Hupa M. Influence of the non-bridging oxygen groups on the bioactivity of silicate glasses. J Mater Sci Mater Med. 2002;13:1221–5.

    Article  CAS  Google Scholar 

  34. International Standard 10993-5, Biological evaluation of medical devices Part 5: tests for in vitro cytotoxicity. geneve, Switzerland; 1999.

  35. Boyd D, Murphy S, Towler MR, Wren AW, Hayakawa S. Analysis of gamma-irradiated synthetic bone grafts by 29Si MAS-NMR spectroscopy, calorimetry and XRD. J Non-Cryst Solids. 2009;355(45–47):2285–8.

    Article  CAS  Google Scholar 

  36. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity. Biomaterials. 2006;27:2907–15.

    Article  CAS  Google Scholar 

  37. Cho SB, Miyaji F, Kokubo T, Nakanishi K, Soga N, Nakamura T. Apatite formation on silica gel in simulated body fluid: effects of structural modification with solvent-exchange. J Mater Sci Mater Med. 1998;9:279–84.

    Article  CAS  Google Scholar 

  38. Dong-Hui F, Zheng X, Shi-pu L, Yu-hua Y. Formation of apatite in simulated body fluid. J Wuhan Univ Tech-Mater Sci Ed. 2002;17(4):44–6.

    Article  Google Scholar 

  39. Sun J, Li Y, Li L, Zhao W, Li L, Gao J, Ruan M, Shi J. Functionalization and bioactivity in vitro of mesoporous bioactive silicates. J Non-Cryst Solids. 2008;35S:3799–805.

    Article  Google Scholar 

  40. Loof J, Svahn F, Jarmar T, Engqvist H, Pameijer CH. A comparative study of the bioactivity of three materials for dental applications. Dent Mater. 2008;24:653–9.

    Article  Google Scholar 

  41. Boyd D, Towler MR, Wren AW, Clarkin OM, Tanner DA. TEM analysis of apatite surface layers observed on zinc based glass polyalkenoate cements. J Mater Sci. 2008;43:1170–3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. W. Wren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wren, A.W., Cummins, N.M., Laffir, F.R. et al. The bioactivity and ion release of titanium-containing glass polyalkenoate cements for medical applications. J Mater Sci: Mater Med 22, 19–28 (2011). https://doi.org/10.1007/s10856-010-4184-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4184-4

Keywords

Navigation