Skip to main content
Log in

PVA/STMP based hydrogels as potential substitutes of human vitreous

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

PVA based hydrogels were synthesised using, as crosslinking agent, trisodium trimetaphosphate (STMP) to obtain potential substitutes for the vitreous body of the eye. The hydrogels, obtained using different amounts of STMP, were characterised by Infrared Spectroscopy which confirmed the successful occurrence of crosslinking reaction. The mechanical spectra of the fully hydrated samples confirmed covalently crosslinked systems (i.e. G′ > G″). The rheological analysis pointed out that only one of the hydrogels (PVA STMP 8:1) showed a behaviour similar to that of human vitreous. The hydrogel was also subjected to injection through a small needle, a procedure that is essential in the use of vitreous substitutes. Further analysis in terms of light transmittance, water content measurements, diffusion coefficient and cytotoxicity confirmed the applicability of such a hydrogel as vitreous substitute.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chirila TV, Hong YE, Dalton PD, Constable IJ, Refojo MF. The use of hydrophilic polymers as artificial vitreous. Prog Polym Sci. 1998;23:475–508.

    Article  CAS  Google Scholar 

  2. Chirila TV, Hong YE. Poly(1-vinyl-2-pyrrolidinone) hydrogels as vitreous substitutes: a rheological study. Pol Int. 1998;46:183–95.

    Article  CAS  Google Scholar 

  3. Liesegang TJ. Viscoelastics. Int Ophthalmol Clin. 1993;33:127–47.

    Article  CAS  PubMed  Google Scholar 

  4. Fernandez-Vigo J, Refojo MF, Verstraeten T. Evaluation of a viscoelastic solution of hydroxypropyl methylcellulose as a potential vitreous substitute. Retina. 1990;10:148–52.

    Article  CAS  PubMed  Google Scholar 

  5. Lloyd AW, Faragher RGA, Denyer SP. Ocular biomaterials and implants. Biomaterials. 2001;22:769–85.

    Article  CAS  PubMed  Google Scholar 

  6. Mukai N, Lee PF, Oguri M, Schepens CL. A longterm evaluation of silicone retinopathy in monkeys. Can J Ophthalmol. 1975;10:391–402.

    CAS  PubMed  Google Scholar 

  7. Sugar HS, Okamura ID. Intravitreal silicone injection. Arch Ophthalmol. 1976;94:612–5.

    CAS  PubMed  Google Scholar 

  8. Eckardt C, Nicolai U, Czank M, Schmidt D. Identification of silicone oil in the retina after intravitreal injection. Retina. 1992;12:17–22.

    Article  Google Scholar 

  9. Kirchhof B, Tavakolian U, Paulmann H, Heimann K. Histopathological findings in eyes after silicone oil injection. Graefe’s Arch Clin Exp Ophthalmol. 1986;224:34–7.

    Article  CAS  Google Scholar 

  10. Budde M, Cursifen C, Holbach LM, Naumann GOH. Silicone oil-associated optic nerve degeneration. Am J Ophthalmol. 2001;131:392–4.

    Article  CAS  PubMed  Google Scholar 

  11. Couplaud SE, Heimann H, Lee WR. Histopathological changes on ocular tissues following silicone oil tamponade in vitreoretinal surgery. In: Kriegelstein GK, editor. Retinology today (In Memoriam Klaus Heimann). Gemmering: Ad manum medici; 2000. p. 37–42.

    Google Scholar 

  12. Eller AW, Friberg TR, Mah F. Migration of silicone oil into the brain: a complication of intraocular silicone oil for retinal tamponade. Am J Ophthalmol. 2000;129:685–8.

    Article  CAS  PubMed  Google Scholar 

  13. Capone JA, Aaberg TM. Silicone oil in vitreoretinal surgery. Curr Opin Ophthalmol. 1995;6:33–7.

    PubMed  Google Scholar 

  14. Yamauchi A, Matsuzawa Y, Nishioka K, Hara Y, Kamiya S. PVA hydrogel for vitreous replacement. Kobunshi Ronbunshu. 1977;34:261–6.

    CAS  Google Scholar 

  15. Gliko-Kabir I, Penhasi A, Rubinstein A. Phosphated crosslinked guar for colon-specific drug delivery I Preparation and physicochemical characterization. J Controll Rel. 2000;63:121–7.

    Article  CAS  Google Scholar 

  16. Ross-Murphy SB. Rheological characterization of polymeric gels and networks. Polym Gel Netw. 1994;2:229–37.

    Article  CAS  Google Scholar 

  17. Dalton DP, Chirila TV, Hong Y, Jefferson A. Oscillatory shear experiments as a criteria for potential vitreous substitutes. Polym Gel Netw. 1995;3:429–44.

    Article  CAS  Google Scholar 

  18. Van Krevelen DW. Properties of polymers. 3rd ed. Amsterdam, The Netherlands: Elsevier; 1990. p. 388–411.

    Google Scholar 

  19. Nickerson CS, Park J, Kornfield JA, Karageozian H. Rheological properties of the vitreous and the role of hyaluronic acid. J Biomech. 2008;41:1840–6.

    Article  PubMed  Google Scholar 

  20. Lin CH, Lin WC, Yang MC. Fabrication and characterization of ophthalmically compatible hydrogels composed of poly(dimethyl siloxane-urethane)/Pluronic F127. Colloids Surf B Biointerfaces. 2009;71:36–44.

    Article  CAS  PubMed  Google Scholar 

  21. Barnes HA. Thixotropy—a review. J Non-Newtonian Fluid Mech. 1997;70:1–33.

    Article  CAS  MathSciNet  Google Scholar 

  22. Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time dependent field gradient. J Chem Phys. 1965;42:288–92.

    Article  CAS  ADS  Google Scholar 

  23. Liu M, Mao X, Ye C, Nicholson JK, Lindon JC. Improved WATERGATE pulse sequences for solvent suppression in NMR spectroscopy. J Magn Reson. 1998;132:125–9.

    Article  CAS  ADS  Google Scholar 

  24. Bellamy LJ. The infrared spectra of complex molecules. 2nd ed. London: Chapman and Hall Ltd; 1980.

  25. Ferry JD. Viscoelastic properties of polymers. 3rd ed. New York USA: John Wiley & Sons; 1980. p. 34–40.

    Google Scholar 

  26. Leaderman H. In: Eirich FR, editor. Rheology: theory and applications, vol. II. New York, USA: Academic Press; 1958. p. 1–61.

    Google Scholar 

  27. Barbucci R, Leone G, Lamponi S. Thixotropy property of hydrogels to evaluate the cell growing on the inside of the material bulk (Amber Effect). J Biomed Mater Res B Appl Biomater. 2006;76B:33–40.

    Article  CAS  Google Scholar 

  28. Matsuyama H, Teramoto M, Urano H. Analysis of solute diffusion in poly(vinyl alcohol) hydrogel membrane. J Membr Sci. 1997;126:151–60.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Italian Interuniversity Consortium CSGI supported the research. The authors would like to thank Dr. Renzo Pepi and TA Instruments for putting the AR2000 rheometer at authors’ disposal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gemma Leone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leone, G., Consumi, M., Aggravi, M. et al. PVA/STMP based hydrogels as potential substitutes of human vitreous. J Mater Sci: Mater Med 21, 2491–2500 (2010). https://doi.org/10.1007/s10856-010-4092-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4092-7

Keywords

Navigation