Skip to main content

Advertisement

Log in

Amelogenin is phagocytized and induces changes in integrin configuration, gene expression and proliferation of cultured normal human dermal fibroblasts

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Fibroblasts are central in wound healing by expressing important mediators and producing and remodelling extracellular matrix (ECM) components. This study aimed at elucidating possible mechanisms of action of the ECM protein amelogenin on normal human dermal fibroblasts (NHDF). Amelogenin at 100 and 1000 μg/ml increased binding of NHDF via several integrins, including αvβ3, αvβ5 and α5β1. Further, both surface interaction and cellular uptake of amelogenin by NHDF was observed using scanning and transmission electron microscopy. Gene microarray studies showed >8-fold up or down-regulation of genes, of which most are involved in cellular growth, migration and differentiation. The effect of amelogenin was exemplified by increased proliferation over 7 days. In conclusion, the beneficial effects of amelogenin on wound healing are possibly conducted by stimulating fibroblast signalling, proliferation and migration via integrin interactions. It is hypothesized that amelogenin stimulates wound healing by providing connective tissue cells with a temporary extracellular matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ågren MS, Werthen M. The extracellular matrix in wound healing: a closer look at therapeutics for chronic wounds. Int J Low Extrem Wounds. 2007;6:82–97.

    Article  PubMed  Google Scholar 

  2. Ågren MS, Eaglstein WH, Ferguson MW, Harding KG, Moore K, Saarialho-Kere UK, et al. Causes and effects of the chronic inflammation in venous leg ulcers. Acta Derm Venereol Suppl (Stockh). 2000;210:3–17.

    Google Scholar 

  3. Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med. 1999;341:738–46.

    Article  CAS  PubMed  Google Scholar 

  4. Maycock J, Wood SR, Brookes SJ, Shore RC, Robinson C, Kirkham J. Characterization of a porcine amelogenin preparation, EMDOGAIN, a biological treatment for periodontal disease. Connect Tissue Res. 2002;43:472–6.

    CAS  PubMed  Google Scholar 

  5. Halthur TJ, Björklund A, Elofsson UM. Self-assembly/aggregation behavior and adsorption of enamel matrix derivate protein to silica surfaces. Langmuir. 2006;22:2227–34.

    Article  CAS  PubMed  Google Scholar 

  6. Fincham AG, Moradian-Oldak J, Simmer JP. The structural biology of the developing dental enamel matrix. J Struct Biol. 1999;126:270–99.

    Article  CAS  PubMed  Google Scholar 

  7. Hammarström L, Heijl L, Gestrelius S. Periodontal regeneration in a buccal dehiscence model in monkeys after application of enamel matrix proteins. J Clin Periodontol. 1997;24:669–77.

    Article  PubMed  Google Scholar 

  8. Heden G, Wennström J, Lindhe J. Periodontal tissue alterations following Emdogain treatment of periodontal sites with angular bone defects. A series of case reports. J Clin Periodontol. 1999;26:855–60.

    Article  CAS  PubMed  Google Scholar 

  9. Heijl L, Heden G, Svärdström G, Östgren A. Enamel matrix derivative (EMDOGAIN) in the treatment of intrabony periodontal defects. J Clin Periodontol. 1997;24:705–14.

    Article  CAS  PubMed  Google Scholar 

  10. Wennström JL, Lindhe J. Some effects of enamel matrix proteins on wound healing in the dento-gingival region. J Clin Periodontol. 2002;29:9–14.

    Article  PubMed  Google Scholar 

  11. Gestrelius S, Lyngstadaas SP, Hammarström L. Emdogain—periodontal regeneration based on biomimicry. Clin Oral Investig. 2000;4:120–5.

    Article  CAS  PubMed  Google Scholar 

  12. Vowden P, Romanelli M, Peter R, Boström A, Josefsson A, Stege H. The effect of amelogenins (Xelma) on hard-to-heal venous leg ulcers. Wound Repair Regen. 2006;14:240–6.

    Article  PubMed  Google Scholar 

  13. Vowden P, Romanelli M, Price P. Effect of amelogenin extracellular matrix protein and compression on hard-to-heal venous leg ulcers. J Wound Care. 2007;16:189–95.

    CAS  PubMed  Google Scholar 

  14. Almqvist S, Werthén M, Törnqvist J, Johansson A, Ågren MS, Thomsen P. Evaluation of a near-senescent human dermal fibroblast cell line and effect of amelogenin. Br J Dermatol. 2009;160:1163–71.

    Article  CAS  PubMed  Google Scholar 

  15. Schlueter SR, Carnes DL, Cochran DL. In vitro effects of enamel matrix derivative on microvascular cells. J Periodontol. 2007;78:141–51.

    Article  CAS  PubMed  Google Scholar 

  16. Yuan K, Chen CL, Lin MT. Enamel matrix derivative exhibits angiogenic effect in vitro and in a murine model. J Clin Periodontol. 2003;30:732–8.

    Article  CAS  PubMed  Google Scholar 

  17. Mirastschijski U, Konrad D, Lundberg E, Lyngstadaas SP, Jorgensen LN, Ågren MS. Effects of a topical enamel matrix derivative on skin wound healing. Wound Repair Regen. 2004;12:100–8.

    PubMed  Google Scholar 

  18. Grayson RE, Yamakoshi Y, Wood EJ, Ågren MS. The effect of the amelogenin fraction of enamel matrix proteins on fibroblast-mediated collagen matrix reorganization. Biomaterials. 2006;27:2926–33.

    Article  CAS  PubMed  Google Scholar 

  19. Gestrelius S, Andersson C, Lidström D, Hammarström L, Somerman M. In vitro studies on periodontal ligament cells and enamel matrix derivative. J Clin Periodontol. 1997;24:685–92.

    Article  CAS  PubMed  Google Scholar 

  20. Hoang AM, Klebe RJ, Steffensen B, Ryu OH, Simmer JP, Cochran DL. Amelogenin is a cell adhesion protein. J Dent Res. 2002;81:497–500.

    Article  CAS  PubMed  Google Scholar 

  21. Lyngstadaas SP, Lundberg E, Ekdahl H, Andersson C, Gestrelius S. Autocrine growth factors in human periodontal ligament cells cultured on enamel matrix derivative. J Clin Periodontol. 2001;28:181–8.

    Article  CAS  PubMed  Google Scholar 

  22. Narani N, Owen GR, Hakkinen L, Putnins E, Larjava H. Enamel matrix proteins bind to wound matrix proteins and regulate their cell-adhesive properties. Eur J Oral Sci. 2007;115:288–95.

    Article  CAS  PubMed  Google Scholar 

  23. Zeldich E, Koren R, Nemcovsky C, Weinreb M. Enamel matrix derivative stimulates human gingival fibroblast proliferation via ERK. J Dent Res. 2007;86:41–6.

    Article  CAS  PubMed  Google Scholar 

  24. Rincon JC, Haase HR, Bartold PM. Effect of Emdogain on human periodontal fibroblasts in an in vitro wound-healing model. J Periodontal Res. 2003;38:290–5.

    Article  CAS  PubMed  Google Scholar 

  25. Reseland JE, Reppe S, Larsen AM, Berner HS, Reinholt FP, Gautvik KM, et al. The effect of enamel matrix derivative on gene expression in osteoblasts. Eur J Oral Sci. 2006;114(Suppl 1):205–11.

    Article  CAS  PubMed  Google Scholar 

  26. Van der Pauw MT, Van den Bos T, Everts V, Beertsen W. Enamel matrix-derived protein stimulates attachment of periodontal ligament fibroblasts and enhances alkaline phosphatase activity and transforming growth factor beta1 release of periodontal ligament and gingival fibroblasts. J Periodontol. 2000;71:31–43.

    Article  PubMed  Google Scholar 

  27. Suzuki N, Ohyama M, Maeno M, Ito K, Otsuka K. Attachment of human periodontal ligament cells to enamel matrix-derived protein is mediated via interaction between BSP-like molecules and integrin alpha(v)beta3. J Periodontol. 2001;72:1520–6.

    Article  CAS  PubMed  Google Scholar 

  28. van der Pauw MT, Everts V, Beertsen W. Expression of integrins by human periodontal ligament and gingival fibroblasts and their involvement in fibroblast adhesion to enamel matrix-derived proteins. J Periodontal Res. 2002;37:317–23.

    Article  PubMed  Google Scholar 

  29. Garcia AJ, Boettiger D. Integrin-fibronectin interactions at the cell-material interface: initial integrin binding and signaling. Biomaterials. 1999;20:2427–33.

    Article  CAS  PubMed  Google Scholar 

  30. Grinnell F, Feld MK. Adsorption characteristics of plasma fibronectin in relationship to biological activity. J Biomed Mater Res. 1981;15:363–81.

    Article  CAS  PubMed  Google Scholar 

  31. Friedman PL, Ellisman MH. Enhanced visualization of peripheral nerve and sensory receptors in the scanning electron microscope using cryofracture and osmium-thiocarbohydrazide-osmium impregnation. J Neurocytol. 1981;10:111–31.

    Article  CAS  PubMed  Google Scholar 

  32. Clark RA. Potential roles of fibronectin in cutaneous wound repair. Arch Dermatol. 1988;124:201–6.

    Article  CAS  PubMed  Google Scholar 

  33. Dupuy AG, Caron E. Integrin-dependent phagocytosis: spreading from microadhesion to new concepts. J Cell Sci. 2008;121:1773–83.

    Article  CAS  PubMed  Google Scholar 

  34. Grinnell F, Geiger B. Interaction of fibronectin-coated beads with attached and spread fibroblasts. Binding, phagocytosis, and cytoskeletal reorganization. Exp Cell Res. 1986;162:449–61.

    Article  CAS  PubMed  Google Scholar 

  35. Lee W, Sodek J, McCulloch CA. Role of integrins in regulation of collagen phagocytosis by human fibroblasts. J Cell Physiol. 1996;168:695–704.

    Article  CAS  PubMed  Google Scholar 

  36. McCulloch CA, Knowles GC. Deficiencies in collagen phagocytosis by human fibroblasts in vitro: a mechanism for fibrosis? J Cell Physiol. 1993;155:461–71.

    Article  CAS  PubMed  Google Scholar 

  37. Shapiro JL, Wen X, Okamoto CT, Wang HJ, Lyngstadaas SP, Goldberg M, et al. Cellular uptake of amelogenin, and its localization to CD63, and Lamp1-positive vesicles. Cell Mol Life Sci. 2007;64:244–56.

    Article  CAS  PubMed  Google Scholar 

  38. Brett PM, Parkar M, Olsen I, Tonetti M. Expression profiling of periodontal ligament cells stimulated with enamel matrix proteins in vitro: a model for tissue regeneration. J Dent Res. 2002;81:776–83.

    Article  CAS  PubMed  Google Scholar 

  39. Barkana I, Alexopoulou E, Ziv S, Jacob-Hirsch J, Amariglio N, Pitaru S, et al. Gene profile in periodontal ligament cells and clones with enamel matrix proteins derivative. J Clin Periodontol. 2007;34:599–609.

    Article  CAS  PubMed  Google Scholar 

  40. Parkar MH, Tonetti M. Gene expression profiles of periodontal ligament cells treated with enamel matrix proteins in vitro: analysis using cDNA arrays. J Periodontol. 2004;75:1539–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the members of the Electron Microscopy Unit at Sahlgrenska Academy, Göteborg, Sweden for the expert technical assistance during the electron microscopy studies. The support by the Swedish Research Council (grant K2006-73X-09495-16-3), Hjalmar Svensson Foundation, Mölnlycke Health Care AB and the Institute of Biomaterials and Cell Therapy (IBCT) (part of GöteborgBIO), is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofia Almqvist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almqvist, S., Werthén, M., Johansson, A. et al. Amelogenin is phagocytized and induces changes in integrin configuration, gene expression and proliferation of cultured normal human dermal fibroblasts. J Mater Sci: Mater Med 21, 947–954 (2010). https://doi.org/10.1007/s10856-009-3952-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3952-5

Keywords

Navigation