Skip to main content
Log in

Synthesis and bioimmunological efficiency of poly(2-oxazolines) containing a free amino group

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Novel amphiphilic copolymers on the basis of 2-oxazolines containing a free amino group were prepared. The copolymers were synthesized by the living cationic polymerization of 2-ethyl-2-oxazoline (ETOX) and 2-(4-aminophenyl)-2-oxazoline (APOX). The main goal of this work was the synthesis of water soluble polymer material with the defined number of functional groups necessary for the attachment of proteins and polysaccharides. A high concentration of free amino groups allows immobilization of various biosubstances, e.g. drugs, proteins or polysaccharides. Thermal properties have been studied with respect to the composition of the copolymers. Cytotoxicity and the bioimmunological efficiency of the selected copolymer were studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adams N, Schubert US. Poly(2-oxazolines) in biological and biomedical application contexts. Adv Drug Deliv Rev. 2007;59:1504–20.

    Article  CAS  PubMed  Google Scholar 

  2. Aoi K, Okada M. Polymerization of oxazolines. Prog Polym Sci. 1996;21:151–208.

    Article  CAS  Google Scholar 

  3. Litt MH, Hsieh BR, Krieger IM, Chen TT, Lu HL. Low surface energy polymers and surface-active block polymers: II. Rigid microporous foams by emulsion polymerization. J Colloid Interface Sci. 1987;115:312–29.

    Article  CAS  Google Scholar 

  4. Weberskirch R, Hettich R, Nuyken O, Schmaljohann D, Voit B. Synthesis of new amphiphilic star polymers derived from a hyperbranched macroinitiator by the cationic ‘grafting from’ method. Macromol Chem Phys. 1999;200:863–73.

    Article  CAS  Google Scholar 

  5. Gross A, Maier G, Nuyken O. Synthesis and copolymerization of macromonomers based on 2-nonyl- and 2-phenyl-2-oxazoline. Macromol Chem Phys. 1996;197:2811–26.

    Article  CAS  Google Scholar 

  6. Hoogenboom R, Thijs HML, Fijten MWM, Van Lankvelt BM, Schubert US. One-pot synthesis of 2-phenyl-2-oxazoline-containing quasi-diblock copoly(2-oxazoline)s under microwave irradiation. J Polym Sci A: Polym Chem. 2007;45:416–22.

    Article  CAS  Google Scholar 

  7. Wang CH, Fan KR, Hsiue GH. Enzymatic degradation of PLLA-PEOz-PLLA triblock copolymers. Biomaterials. 2005;26:2803–11.

    Article  CAS  PubMed  Google Scholar 

  8. Uyama H, Kobayashi S. Synthesis of poly(2-oxazoline) macromonomers having a vinyl ester group. Macromolecules. 1991;24:614–5.

    Article  CAS  ADS  Google Scholar 

  9. Cesana S, Auernheimer J, Jordan R, Kessler H, Nuyken O. First poly(2-oxazoline)s with pendant amino groups. Macromol Chem Phys. 2006;207:183–92.

    Article  CAS  Google Scholar 

  10. Zarka MT, Nuyken O, Weberskirch R. Amphiphilic polymer supports for the assymetric hydrogenation of amino acid precursors in water. Chem Eur J. 2003;9:3228–34.

    Article  CAS  Google Scholar 

  11. Cesana S, Kurek A, Baur MA, Auernheimer J, Nuyken O. Polymer-bound thiol groups on poly(2-oxazoline)s. Macromol Rapid Commun. 2007;28:608–15.

    Article  CAS  Google Scholar 

  12. Taubmann C, Luxenhofer R, Cesana S, Jordan R. First aldehyde-functionalized poly(2-oxazoline)s for chemiselective ligation. Macromol Biosci. 2005;5:603–12.

    Article  CAS  PubMed  Google Scholar 

  13. Nuyken O, Maier G, Gross A. Systematic investigation on the reactivity of oxazolinium salts. Macromol Chem Phys. 1996;197:83–95.

    Article  CAS  Google Scholar 

  14. Culbertson BM, Xue YP. Synthesis of 2-(p-aminophenyl)-2-oxazoline and its cationic polymerization studies by differential scanning calorimetry. J Macromol Sci: Pure Appl Chem. 1997;A34:1737–46.

    CAS  Google Scholar 

  15. Rihova B. Biocompatibility of biomaterials: hemocompatibility, immunocompatibility and biocompatibility of solid polymeric materials and soluble targetable polymeric carriers. Adv Drug Deliv Rev. 1996;21:157–76.

    Article  CAS  Google Scholar 

  16. Stuart LM, Ezekowitz RAB. Phagocytosis: elegant complexity. Immunity. 2005;22:539–50.

    Article  CAS  PubMed  Google Scholar 

  17. Gordon S. The macrophage-past, present and future. Eur J Immunol. 2007;37:S9–17.

    Article  CAS  PubMed  Google Scholar 

  18. Midwood KS, Williams LV, Schwarzbauer JE. Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol. 2004;36:1031–7.

    Article  CAS  PubMed  Google Scholar 

  19. Felix K, Lin S, Bornkamm GW, Janz S. Tetravinyl-tetramethylcyclo-tetrasiloxane (tetravinyl D4) is a mutagen in Rat2 lambda lacl fibroblasts. Carcinogenesis. 1998;19:315–20.

    Article  CAS  PubMed  Google Scholar 

  20. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Meth. 1983;65:55–63.

    Article  CAS  Google Scholar 

  21. Leffler M, Adams T. Aminophenyl-2-oxazolines as local anesthetics. J Am Chem Soc. 1937;59:2252–8.

    Article  CAS  Google Scholar 

  22. Sashidhar RB, Capoor AK, Ramana D. Quantitation of epsilon-amino group using amino-acids as reference-standards by trinitrobenzene sulfonic-acid—a simple spectrophotometric method for the estimation of hapten to carrier protein ratio. J Immunolog Meth. 1994;167:121–7.

    Article  CAS  Google Scholar 

  23. Farkaš P, Korcová J, Kronek J, Bystrický S. Preparation of synthetic polyoxazoline based carrier and Vibrio cholerae O-specific polysaccharide conjugate vaccine. Eur J Med Chem. doi:10.1016/j.ejmech.2009.11.002.

  24. Costa ED, Pereira MM, Mansur HS. Properties and biocompatibility of chitosan films modified by blending with PVA and chemically crosslinked. J Mater Sci Mater Med. 2009;20:553–61.

    Article  Google Scholar 

  25. Jeong JH, Song SH, Lim DW, Lee H, Park TG. DNA transfection using linear poly(ethylenimine) prepared by controlled acid hydrolysis of poly(2-ethyl-2-oxazoline). J Control Release. 2001;73:391–9.

    Article  CAS  PubMed  Google Scholar 

  26. Janeway CA. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54:1–13.

    CAS  PubMed  Google Scholar 

  27. Splettstoesser WD, Schuff-Werner P. Oxidative stress in phagocytes-“The enemy within”. Microsc Res Tech. 2002;57:441–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Project No. 2/0157/09 from the Slovak Scientific Grant Agency and Project No. 003206 from the Slovak Research and Development Agency. The authors thank Dr. I. Lacik for providing the molecular characteristics of the synthesized polymers and copolymers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kronek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kronek, J., Lustoň, J., Kroneková, Z. et al. Synthesis and bioimmunological efficiency of poly(2-oxazolines) containing a free amino group. J Mater Sci: Mater Med 21, 879–886 (2010). https://doi.org/10.1007/s10856-009-3949-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3949-0

Keywords

Navigation