Skip to main content

Advertisement

Log in

Preparation of collagen modified photopolymers: a new type of biodegradable gel for cell growth

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this study a new branched methacrylated poly(propylene glycol-co-lactic acid) (PPG–PLA–IEM) and methacrylated cellulose acetate butyrate resin (CAB–IEM) were synthesized. Hydrogels with various amounts of PPG–PLA–IEM and CAB–IEM (25, 50 and 75 wt% IEM modified) were prepared by photopolymerization. Collagen tethered PEG–monoacrylate (PEGMA–collagen) was prepared and introduced as a bioactive moiety to modify the hydrogel in order to enhance cell affinity. In vitro attachment and growth of 3T3 mouse fibroblasts and human umbilical vein endothelial cells (HUVEC) on the hydrogels with and without collagen were also investigated. It was observed that, the collagen improves the cell adhesion onto the hydrogel surface. With the increasing amount of collagen, cell viability increased by 28% for ECV304 (P < 0.05) and 30% for 3T3 (P < 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Dawson IJ, Wahl AD, Lanham AS, Kanczler JM, Czernuszka TJ, Oreffo OCR. Development of specific collagen scaffolds to support the osteogenic and chondrogenic differentiation of human bone marrow stromal cells. Biomaterials. 2008;29:3105–3116. doi:10.1016/j.biomaterials.2008.03.040.

    Google Scholar 

  2. Vunjak-Novakovic G, Freshney IR. Culture of cells for tissue engineering. NY: John Wiley & Sons, Inc; 2006.

    Google Scholar 

  3. Salgado AJ, Coutinho OP, Reis RL. Novel starch-based scaffolds for bone tissue engineering: cytotoxicity, cell culture, and protein expression. Tissue Eng. 2004;10:465–74. doi:10.1089/107632704323061825.

    Article  CAS  PubMed  Google Scholar 

  4. Shin H, Ruhe PQ, Mikos AG, Jansen AJ. In vivo bone and soft tissue response to injectable, biodegradable oligo(poly(ethylene glycol) fumarate) hydrogels. Biomaterials. 2003;24:3201–11. doi:10.1016/S0142-9612(03)00168-6.

    Article  CAS  PubMed  Google Scholar 

  5. Schuster M, Turecek C, Kaiser B, Stampfl J, Liska R, Varga F. Evaluation of biocompatible photopolymers II: further reactive diluents. J Macromol Sci A Pure Appl Chem. 2007;44:261–8. doi:10.1007/s00706-007-0609-2.

    Google Scholar 

  6. Freeman JW, Kwansa AL. Recent advancements in ligament tissue engineering: the use of various techniques and materials for acl repair. Recent Patents Biomed Eng. 2008;1:18–23. doi:1874-7647/08.

    Article  CAS  Google Scholar 

  7. Zanetta M, Quirici N, Demarosi F, Tanzi MC, Rimondini L, Farè S. Ability of polyurethane foams to support cell proliferation and the differentiation of MSCs into osteoblasts. Acta Biomaterilia. 2009;5:1126–36. doi:10.1016/j.actbio.2008.12.003.

    Article  CAS  Google Scholar 

  8. Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur Cells Mater. 2003;5:1.

    CAS  Google Scholar 

  9. Akdemir ZS, Akçakaya H, Kahraman MV, Ceyhan T, Apohan NA, Güngör A. Photopolymerized injectable RGD-modified fumarated poly(ethylene glycol) diglycidyl ether hydrogels for cell growth. Macromol Biosci. 2008;8:852–62. doi:10.1002/mabi.200700319.

    Article  CAS  PubMed  Google Scholar 

  10. Thomson RC, Wake MC, Yaszemski MJ, Mikos AG. Advances in polymer science, vol. 122. Berlin, Heidelberg: Springer-Verlag; 1995. doi:10.1007/3-540-58788-8.

    Google Scholar 

  11. Ghosh I, Jaın RK, Glasser WG. Multiphase materials with lignin. XV. Blends of cellulose acetate butyrate with lignin esters. J Appl Polym Sci. 1999;74:448–57.

    Article  CAS  Google Scholar 

  12. Holy CE, Shoichet MS, Davies JE. Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: investigating initial cell-seeding density and culture period. Biomed Mater Res. 2000;51:376–82. doi:10.1002/1097-4636(20000905)51:3<376:AID-JBM11>3.0.CO;2-G.

    Article  CAS  Google Scholar 

  13. Mooney DJ, Baldwin DF, Suh NP, Vacanti PJ, Langer R. Novel approach to fabricate porous sponges of poly(d,l-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials. 1996;17:1417–22. doi:10.1016/0142-9612(96)87284-X.

    Article  CAS  PubMed  Google Scholar 

  14. Guidoin MF, Marois Y, Bejui J, Poddevin N, Martin King W, Guidoin R. Analysis of retrieved polymer fiber based replacements for the ACL. Biomaterials. 2000;21:2461–74. doi:10.1016/S0142-9612(00)00114-9.

    Article  CAS  PubMed  Google Scholar 

  15. Washburn NR, Simon CG, Tona A, Elgendy MH, Karim A, Amis JE. Co-extrusion of biocompatible polymers for scaffolds with co-continuous morphology. J Biomed Mater Res. 2002;60:20–9. doi:10.1002/jbm.10049.

    Article  CAS  PubMed  Google Scholar 

  16. Shea LD, Wang D, Franceschi RT. Engineered bone development from a pre-osteoblast cell line on three-dimensional scaffolds. Tissue Eng. 2000;6:605–17. doi:10.1089/10763270050199550.

    Article  CAS  PubMed  Google Scholar 

  17. Madihally SV, Matthew HWT. Porous chitosan scaffolds for tissue engineering. Biomaterials. 1999;20:1133–42. doi:10.1016/S0142-9612(99)00011-3.

    Article  CAS  PubMed  Google Scholar 

  18. Liao S, Murugan R, Chan KC, Ramakrishna S. Processing nanoengineered scaffolds through electrospinning and mineralization suitable for biomimetic bone tissue engineering. J Mech Beh Biomed Mater. 2008;1:252–60. doi:10.1016/j.jmbbm.2008.01.007.

    Article  Google Scholar 

  19. Nguyen KY, West LJ. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials. 2002;23:4307–14. doi:10.1016/S0142-9612(02)00175-8.

    Article  CAS  PubMed  Google Scholar 

  20. Grijpma WD, Hou Q, Feijen J. Preparation of biodegradable networks by photo-crosslinking lactide, ε-caprolactone and trimethylene carbonate-based oligomers functionalized with fumaric acid monoethyl ester. Biomaterials. 2005;26:2795–802. doi:10.1016/j.biomaterials.2004.08.002.

    Article  CAS  PubMed  Google Scholar 

  21. Jayabalan M, Vinoy Thomas V, Rajesh PN. Polypropylene fumarate/phloroglucinol triglycidyl methacrylate blend for use as partially biodegradable orthopaedic cement. Biomaterials. 2001;22:2749–57. doi:10.1016/S0142-9612(01)00018-7.

    Article  CAS  PubMed  Google Scholar 

  22. Lin-Gibson S, Bencherif S, Cooper JA, Wetzel SJ, Antonucci JM, Vogel BM, et al. Synthesis and characterization of PEG dimethacrylates and their hydrogels. Biomacromol. 2004;5:1280–7. doi:10.1021/bm0498777.

    Article  CAS  Google Scholar 

  23. Young SJ, Gonzales KD, Anseth SK. Photopolymers in orthopedics: characterization of novel crosslinked polyanhydrides. Biomaterials. 2000;21:1181–8. doi:10.1016/S0142-9612(00)00018-1.

    Article  CAS  PubMed  Google Scholar 

  24. Murugan R, Ramakrishna S. Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials. 2004;25:3829–35. doi:10.1016/j.biomaterials.2003.10.016.

    Article  CAS  PubMed  Google Scholar 

  25. Chen M, Zhao YM, Sun HH, Jin T, Wang QT, Zhou W, et al. Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins: formulation and characteristics. J Control Rel. 2007;118:65–77. doi:10.1016/j.jconrel.2006.11.016.

    Article  CAS  Google Scholar 

  26. Wang T, Cheng G, Ma S, Cai Z, Zhang L. Crystallization behavior, mechanical properties, and environmental biodegradability of poly(-hydroxybutyrate)/cellulose acetate butyrate blends. J Appl Polym Sci. 2003;89:2116–22. doi:10.1002/app.12359.

    Article  CAS  Google Scholar 

  27. Prasitsilp M, Siriwittayakorn T, Molloy R, Suebsanit N, Siriwittayakorn P, Veeranondha S. Cytotoxicity study of homopolymers and copolymers of 2-hydroxyethyl methacrylate and some alkyl acrylates for potential use as temporary skin substitutes. J Mater Sci Mater Med. 2003;7:595–600. doi:10.1023/A:1024066806347.

    Article  Google Scholar 

  28. Chan-Park MB, Zhu AP, Shen JY, Fan AL. Novel photopolymerizable biodegradable triblock polymers for tissue engineering scaffolds: synthesis and characterization. Macromol Biosci. 2004;4:665–73. doi:10.1002/mabi.200300139.

    Article  CAS  PubMed  Google Scholar 

  29. Düz AB, Hızal G, Yağcı Y. Block copolymers by transformation of living ring opening polymerization into an initer process. Eur Polym J. 2000;36:1373–8. doi:10.1016/S0014-3057(99)00189-5.

    Article  Google Scholar 

  30. Mossman T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63. doi:10.1016/0022-1759(83)90303-4.

    Article  Google Scholar 

  31. Burdick JA, Anseth KS. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials. 2002;23:4315–23. doi:10.1016/S0142-9612(02)00176-X.

    Article  CAS  PubMed  Google Scholar 

  32. Guo K, Chu CC. Synthesis and characterization of novel biodegradable unsaturated poly(ester amide)/poly(ethylene glycol) diacrylate hydrogels. J Polym Sci A Polym Chem. 2005;43:3932–44. doi:10.1002/pola.20781.

    Article  CAS  ADS  Google Scholar 

  33. Wu YC, Shaw SY, Lin HR, Lee TM, Yang CY. Bone tissue engineering evaluation based on rat calvaria stromal cells cultured on modified PLGA scaffolds. Biomaterials. 2006;27:896–904.

    Article  CAS  PubMed  MATH  Google Scholar 

  34. Ma Z, Gao C, Ji J, Shen J. Protein immobilization on the surface of poly-l-lactic acid films for improvement of cellular interactions. Eur Polym J. 2002;38:2279–84. doi:10.1016/S0014-3057(02)00119-2.

    Article  CAS  Google Scholar 

  35. Van-Wachem PB, Beugelling T, Feijen J, Bantjes A, Detmers JP, Van Aken WG. nteraction of cultured human endothelial cells with polymeric surfaces of different wettabilities. Biomaterials. 1985;6:403–18. doi:10.1016/0142-9612(85)90101-2.

    Article  CAS  PubMed  Google Scholar 

  36. Venkatram Shastri P. US Patent No. 6,730,772 B2; 2004.

  37. Wang L, Wilshaw SP, Korossis S, Fisher J, Jin Z, Ingham E. Factors ınfluencing the oxygen consumption rate of aortic valve ınterstitial cells: application to tissue engineering. Tissue Eng C. 2009;15:355–63. doi:10.1089/ten.tea.2008.0415.

    Article  Google Scholar 

  38. Umare SS, Chandure AS, Pandey RA. Synthesis, characterization and biodegradable studies of 1, 3-propanediol based polyesters. Polym Deg Stab. 2007;92:464–79. doi:10.1016/j.polymdegradstab.2006.10.007.

    Article  CAS  Google Scholar 

  39. Apohan NK, Yılmaz OK, Baysal K, Baysal BM. Poly(d,l-lactic acid)/triblock PCL–PDMS–PCL copolymers: synthesis, characterization and demonstration of their cell growth effects in vitro. Polymer. 2001;42:4109–16. doi:10.1016/S0032-3861(00)00814-4.

    Article  Google Scholar 

  40. Lee KY, Bouhadir KH, Money DJ. Degradation behaviour of covalnetly crosslinked poly(aldehyde guluronate) hydrogels. Macromolecules. 2000;33:97–101.

    Article  CAS  ADS  Google Scholar 

  41. Timmer MD, Ambrose C, Mikos AG. In vitro degradation of polymeric networks of poly(propylene fumarate) and the crosslinking macromer poly(propylene fumarate)-diacrylate. Biomaterials. 2003;24:571–7. doi:10.1016/S0142-9612(02)00368-X.

    Article  CAS  PubMed  Google Scholar 

  42. Bosch P, Del Monte F, Mateo JL, Levy D. Photopolymerization of hydroxyethylmethacrylate in the formation of organic–inorganic hybrid sol-gel matrices. J Polym Sci A Polym Chem. 1996;34:3289–96. doi:10.1002/(SICI)1099-0518(19961130)34:16<3289:AID-POLA4>3.0.CO;2-P.

    Article  CAS  ADS  Google Scholar 

  43. Yu Q, Nauman S, Santerre PJ, Zhu S. UV photopolymerization behavior of dimethacrylate oligomers with camphorquinone/amine initiator system. J Appl Polym Sci. 2001;82:1107–17. doi:10.1002/app.1945.

    Article  CAS  Google Scholar 

  44. Andrzejewska E. Calorimetric study of photopolymerisation of divinyl monomers. Macromol Symp. 2001;171:243–51. doi:10.1002/1521-3900(200106)171:1<243:AID-MASY243>3.0.CO;2-1.

    Article  CAS  Google Scholar 

  45. Scott A, Guelcher Jonathan E. Didier Jeffrey O. Hollinger, biodegradable polyurethanes. Patent no: WO/2007/123536.

  46. Han B, Huang LLH, Cheung D, Cordoba F, Nimni M. Polypeptide growth factors with collagen binding domain:Their potential for tissue repair and organ regeneration. In: Zila P, Greisler HP, editors. Tissue engineering of vascular prosthetic grafts. Austin: RG Landes; 1999. p. 7–299.

    Google Scholar 

  47. Chakrabarti R, Kundu S, Kumar S, Chakrabarti R. Vitamin A as an enzyme that catalyzes the reduction of MTT to formazan by vitamin C. J Cell Biochem. 2000;80:133–8. doi:10.1002/1097-4644(20010101)80:1<133:AID-JCB120>3.0.CO;2-T.

    Article  CAS  PubMed  Google Scholar 

  48. Eberli D, Susaeta R, Yoo JJ, Atala A. A method to ımprove cellular content for corporal tissue engineering. Tissue Eng A. 2008;14:1581–9. doi:10.1089/ten.tea.2007.0249.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by TUBITAK TBAG Project No: 105T254.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atilla Güngör.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayramoğlu, G., Kayaman-Apohan, N., Akçakaya, H. et al. Preparation of collagen modified photopolymers: a new type of biodegradable gel for cell growth. J Mater Sci: Mater Med 21, 761–775 (2010). https://doi.org/10.1007/s10856-009-3929-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3929-4

Keywords

Navigation