Skip to main content

Advertisement

Log in

Integrin and chemokine receptor gene expression in implant-adherent cells during early osseointegration

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The mechanisms of early cellular recruitment and interaction to titanium implants are not well understood. The aim of this study was to investigate the expression of pro-inflammatory cytokines, chemokines and adhesion markers during the first 24 h of implantation. Anodically oxidized and machined titanium implants were inserted in rat tibia. After 3, 12, and 24 h the implants were unscrewed and analyzed with quantitative polymerase chain reaction. Immunohistochemistry and scanning electron microscopy revealed different cell types, morphology and adhesion at the two implant surfaces. A greater amount of cells, as indicated by higher expression of small subunit ribosomal RNA (18S), was detected on the oxidized surface. Higher expression of CXC chemokine receptor-4 (at 12 h) and integrins, αv (at 12 h), β1 (at 24 h) and β2 (at 12 and 24 h) was detected at the oxidized surfaces. Significantly higher tumor necrosis factor-α (at 3 h) and interleukin-1β (at 24 h) expression was demonstrated for the machined surface. It is concluded that material surface properties rapidly modulate the expression of receptors important for the recruitment and adhesion of cells which are crucial for the inflammatory and regenerative processes at implant surfaces in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Anderson J. Inflammation, wound healing and the foreign body response. In: Ratner B, Hoffman A, Schoen F, Lemons J, editors. Biomaterials science, an introduction to materials in medicine. San Diego: Academic Press; 1996. p. 165–73.

    Google Scholar 

  2. Thomsen P, Ericson L. Inflammatory cell response to bone implant surfaces. In: Davies JE, editor. The bone-biomaterial interface. Toronto: University of Toronto Press; 1991. p. 153–69.

    Google Scholar 

  3. Abron A, Hopfensperger M, Thompson J, Cooper LF. Evaluation of a predictive model for implant surface topography effects on early osseointegration in the rat tibia model. J Prosthet Dent. 2001;85:40–6.

    Article  CAS  PubMed  Google Scholar 

  4. Clokie CM, Warshawsky H. Morphologic and radioautographic studies of bone formation in relation to titanium implants using the rat tibia as a model. Int J Oral Maxillofac Implants. 1995;10:155–65.

    CAS  PubMed  Google Scholar 

  5. Masuda T, Salvi GE, Offenbacher S, Felton DA, Cooper LF. Cell and matrix reactions at titanium implants in surgically prepared rat tibiae. Int J Oral Maxillofac Implants. 1997;12:472–85.

    CAS  PubMed  Google Scholar 

  6. Omar O, Svensson S, Zoric N, Lennerås M, Suska F, Wigren S, et al. In vivo gene expression in response to anodically oxidized versus machined titanium implants. J Biomed Mater Res A. 2009. [Epub ahead of print]. doi:10.1002/jbm.a.32475.

  7. Campbell DJ, Kim CH, Butcher EC. Chemokines in the systemic organization of immunity. Immunol Rev. 2003;195:58–71.

    Article  CAS  PubMed  Google Scholar 

  8. Amano H, Morimoto K, Senba M, Wang H, Ishida Y, Kumatori A, et al. Essential contribution of monocyte chemoattractant protein-1/C-C chemokine ligand-2 to resolution and repair processes in acute bacterial pneumonia. J Immunol. 2004;172:398–409.

    CAS  PubMed  Google Scholar 

  9. Ringe J, Strassburg S, Neumann K, Endres M, Notter M, Burmester GR, et al. Towards in situ tissue repair: human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2. J Cell Biochem. 2007;101:135–46.

    Article  CAS  PubMed  Google Scholar 

  10. Hoenig MR, Bianchi C, Sellke FW. Hypoxia inducible factor-1 alpha, endothelial progenitor cells, monocytes, cardiovascular risk, wound healing, cobalt and hydralazine: a unifying hypothesis. Curr Drug Targets. 2008;9:422–35.

    Article  CAS  PubMed  Google Scholar 

  11. Liao TS, Yurgelun MB, Chang SS, Zhang HZ, Murakami K, Blaine TA, et al. Recruitment of osteoclast precursors by stromal cell derived factor-1 (SDF-1) in giant cell tumor of bone. J Orthop Res. 2005;23:203–9.

    Article  PubMed  Google Scholar 

  12. Pitchford SC, Furze RC, Jones CP, Wengner AM, Rankin SM. Differential mobilization of subsets of progenitor cells from the bone marrow. Cell Stem Cell. 2009;4:62–72.

    Article  CAS  PubMed  Google Scholar 

  13. Dar A, Goichberg P, Shinder V, Kalinkovich A, Kollet O, Netzer N, et al. Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nat Immunol. 2005;6:1038–46.

    Article  CAS  PubMed  Google Scholar 

  14. Ji JF, He BP, Dheen ST, Tay SS. Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells. 2004;22:415–27.

    Article  CAS  PubMed  Google Scholar 

  15. Kitaori T, Ito H, Schwarz EM, Tsutsumi R, Yoshitomi H, Oishi S, et al. Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum. 2009;60:813–23.

    Article  CAS  PubMed  Google Scholar 

  16. Wynn RF, Hart CA, Corradi-Perini C, O’Neill L, Evans CA, Wraith JE, et al. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood. 2004;104:2643–5.

    Article  CAS  PubMed  Google Scholar 

  17. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 2004;10:858–64.

    Article  CAS  PubMed  Google Scholar 

  18. Baggiolini M, Dewald B, Moser B. Human chemokines: an update. Annu Rev Immunol. 1997;15:675–705.

    Article  CAS  PubMed  Google Scholar 

  19. Graves DT, Jiang Y. Chemokines, a family of chemotactic cytokines. Crit Rev Oral Biol Med. 1995;6:109–18.

    Article  CAS  PubMed  Google Scholar 

  20. Graves DT, Jiang Y, Valente AJ. The expression of monocyte chemoattractant protein-1 and other chemokines by osteoblasts. Front Biosci. 1999;4:D571–80.

    Article  CAS  PubMed  Google Scholar 

  21. Rahimi P, Wang CY, Stashenko P, Lee SK, Lorenzo JA, Graves DT. Monocyte chemoattractant protein-1 expression and monocyte recruitment in osseous inflammation in the mouse. Endocrinology. 1995;136:2752–9.

    Article  CAS  PubMed  Google Scholar 

  22. Nakashima Y, Sun DH, Trindade MC, Chun LE, Song Y, Goodman SB, et al. Induction of macrophage C-C chemokine expression by titanium alloy and bone cement particles. J Bone Joint Surg Br. 1999;81:155–62.

    Article  CAS  PubMed  Google Scholar 

  23. Fritz EA, Glant TT, Vermes C, Jacobs JJ, Roebuck KA. Titanium particles induce the immediate early stress responsive chemokines IL-8 and MCP-1 in osteoblasts. J Orthop Res. 2002;20:490–8.

    Article  CAS  PubMed  Google Scholar 

  24. Videm V, Strand E. Changes in neutrophil surface-receptor expression after stimulation with FMLP, endotoxin, interleukin-8 and activated complement compared to degranulation. Scand J Immunol. 2004;59:25–33.

    Article  CAS  PubMed  Google Scholar 

  25. Murphy PM, Baggiolini M, Charo IF, Hebert CA, Horuk R, Matsushima K, et al. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev. 2000;52:145–76.

    CAS  PubMed  Google Scholar 

  26. Boyan B, Dean D, Lohmann C, Cochran D, Sylvia V, Schwartz Z. The titanium-bone cell interface in vitro: the role of the surface in promoting osteointegration. In: Brunette DM, Tengvall P, Textor M, Thomsen P, editors. Titanium in medicine. New York: Springer; 2001. p. 561–85.

    Google Scholar 

  27. Sinha RK, Tuan RS. Regulation of human osteoblast integrin expression by orthopedic implant materials. Bone. 1996;18:451–7.

    Article  CAS  PubMed  Google Scholar 

  28. Diener A, Nebe B, Luthen F, Becker P, Beck U, Neumann HG, et al. Control of focal adhesion dynamics by material surface characteristics. Biomaterials. 2005;26:383–92.

    Article  CAS  PubMed  Google Scholar 

  29. Stewart M, Thiel M, Hogg N. Leukocyte integrins. Curr Opin Cell Biol. 1995;7:690–6.

    Article  CAS  PubMed  Google Scholar 

  30. Arnaout MA. Leukocyte adhesion molecules deficiency: its structural basis, pathophysiology and implications for modulating the inflammatory response. Immunol Rev. 1990;114:145–80.

    Article  CAS  PubMed  Google Scholar 

  31. Hayashi H, Nakahama K, Sato T, Tuchiya T, Asakawa Y, Maemura T, et al. The role of Mac-1 (CD11b/CD18) in osteoclast differentiation induced by receptor activator of nuclear factor-kappaB ligand. FEBS Lett. 2008;582:3243–8.

    Article  CAS  PubMed  Google Scholar 

  32. Krause A, Cowles EA, Gronowicz G. Integrin-mediated signaling in osteoblasts on titanium implant materials. J Biomed Mater Res. 2000;52:738–47.

    Article  CAS  PubMed  Google Scholar 

  33. Rouahi M, Champion E, Hardouin P, Anselme K. Quantitative kinetic analysis of gene expression during human osteoblastic adhesion on orthopaedic materials. Biomaterials. 2006;27:2829–44.

    Article  CAS  PubMed  Google Scholar 

  34. ter Brugge PJ, Jansen JA. Initial interaction of rat bone marrow cells with non-coated and calcium phosphate coated titanium substrates. Biomaterials. 2002;23:3269–77.

    Article  PubMed  Google Scholar 

  35. Woodruff MA, Jones P, Farrar D, Grant DM, Scotchford CA. Human osteoblast cell spreading and vinculin expression upon biomaterial surfaces. J Mol Histol. 2007;38:491–9.

    Article  CAS  PubMed  Google Scholar 

  36. Omar O, Suska F, Lenneras M, Zoric N, Svensson S, Hall J, et al. The influence of bone type on the gene expression in normal bone and at the bone-implant interface: experiments in animal model. Clin Implant Dent Relat Res. 2009.

  37. Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 2000;132:365–86.

    CAS  PubMed  Google Scholar 

  38. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45.

    Article  CAS  PubMed  Google Scholar 

  39. Coutu DL, Wu JH, Monette A, Rivard GE, Blostein MD, Galipeau J. Periostin, a member of a novel family of vitamin K-dependent proteins, is expressed by mesenchymal stromal cells. J Biol Chem. 2008;283:17991–8001.

    Article  CAS  PubMed  Google Scholar 

  40. Flick MJ, Du X, Witte DP, Jirouskova M, Soloviev DA, Busuttil SJ, et al. Leukocyte engagement of fibrin(ogen) via the integrin receptor alphaMbeta2/Mac-1 is critical for host inflammatory response in vivo. J Clin Invest. 2004;113:1596–606.

    CAS  PubMed  Google Scholar 

  41. Hu WJ, Eaton JW, Ugarova TP, Tang L. Molecular basis of biomaterial-mediated foreign body reactions. Blood. 2001;98:1231–8.

    Article  CAS  PubMed  Google Scholar 

  42. Tang L, Eaton JW. Fibrin(ogen) mediates acute inflammatory responses to biomaterials. J Exp Med. 1993;178:2147–56.

    Article  CAS  PubMed  Google Scholar 

  43. Rubel C, Gomez S, Fernandez GC, Isturiz MA, Caamano J, Palermo MS. Fibrinogen-CD11b/CD18 interaction activates the NF-kappa B pathway and delays apoptosis in human neutrophils. Eur J Immunol. 2003;33:1429–38.

    Article  CAS  PubMed  Google Scholar 

  44. Sitrin RG, Pan PM, Srikanth S, Todd RF III. Fibrinogen activates NF-kappa B transcription factors in mononuclear phagocytes. J Immunol. 1998;161:1462–70.

    CAS  PubMed  Google Scholar 

  45. Cobb RR, Molony JL. Interleukin-1beta expression is induced by adherence and is enhanced by Fc-receptor binding to immune complex in THP-1 cells. FEBS Lett. 1996;394:241–6.

    Article  CAS  PubMed  Google Scholar 

  46. Nagao H. Fibrinogen affects blood and bone marrow cell functions on titanium in vitro. Kokubyo Gakkai Zasshi. 1998;65:53–63.

    CAS  PubMed  Google Scholar 

  47. Di Iorio D, Traini T, Degidi M, Caputi S, Neugebauer J, Piattelli A. Quantitative evaluation of the fibrin clot extension on different implant surfaces: an in vitro study. J Biomed Mater Res B Appl Biomater. 2005;74:636–42.

    PubMed  Google Scholar 

  48. Jarmar T, Palmquist A, Branemark R, Hermansson L, Engqvist H, Thomsen P. Characterization of the surface properties of commercially available dental implants using scanning electron microscopy, focused ion beam, and high-resolution transmission electron microscopy. Clin Implant Dent Relat Res. 2008;10:11–22.

    Article  PubMed  Google Scholar 

  49. Kang BS, Sul YT, Oh SJ, Lee HJ, Albrektsson T. XPS, AES and SEM analysis of recent dental implants. Acta Biomater. 2009;5:2222–9.

    Article  CAS  PubMed  Google Scholar 

  50. Roessler S, Zimmermann R, Scharnweber D, Werner C, Worch H. Characterization of oxide layers on Ti6Al4V and titanium by streaming potential and streaming current measurements. Colloids Surf B: Biointerfaces. 2002;26:387–95.

    Article  CAS  Google Scholar 

  51. Cai K, Frant M, Bossert J, Hildebrand G, Liefeith K, Jandt KD. Surface functionalized titanium thin films: zeta-potential, protein adsorption and cell proliferation. Colloids Surf B: Biointerfaces. 2006;50:1–8.

    Article  CAS  Google Scholar 

  52. Kim HM, Himeno T, Kawashita M, Lee JH, Kokubo T, Nakamura T. Surface potential change in bioactive titanium metal during the process of apatite formation in simulated body fluid. J Biomed Mater Res A. 2003;67:1305–9.

    Article  PubMed  Google Scholar 

  53. MacDonald DE, Deo N, Markovic B, Stranick M, Somasundaran P. Adsorption and dissolution behavior of human plasma fibronectin on thermally and chemically modified titanium dioxide particles. Biomaterials. 2002;23:1269–79.

    Article  CAS  PubMed  Google Scholar 

  54. Smith IO, Baumann MJ, McCabe LR. Electrostatic interactions as a predictor for osteoblast attachment to biomaterials. J Biomed Mater Res A. 2004;70:436–41.

    Article  CAS  PubMed  Google Scholar 

  55. Cooper JJ, Hunt JA. The significance of zeta potential in osteogenesis. Society for Biomaterials Annual Meeting. Pennsylvania, USA; 2006.

  56. Nebe B, Finke B, Luthen F, Bergemann C, Schroder K, Rychly J, et al. Improved initial osteoblast functions on amino-functionalized titanium surfaces. Biomol Eng. 2007;24:447–54.

    Article  CAS  PubMed  Google Scholar 

  57. Larsson C, Esposito M, Liao H, Thomsen P. Titanium-bone interface in vivo. In: Brunette DM, Tengvall P, Textor M, Thomsen P, editors. Titanium in medicine. New York: Springer; 2001. p. 587–648.

    Google Scholar 

  58. Kalltorp M, Oblogina S, Jacobsson S, Karlsson A, Tengvall P, Thomsen P. In vivo cell recruitment, cytokine release and chemiluminescence response at gold, and thiol functionalized surfaces. Biomaterials. 1999;20:2123–37.

    Article  CAS  PubMed  Google Scholar 

  59. Jansson E, Kalltorp M, Thomsen P, Tengvall P. Ex vivo PMA-induced respiratory burst and TNF-alpha secretion elicited from inflammatory cells on machined and porous blood plasma clot-coated titanium. Biomaterials. 2002;23:2803–15.

    Article  CAS  PubMed  Google Scholar 

  60. Suska F, Esposito M, Gretzer C, Kalltorp M, Tengvall P, Thomsen P. IL-1alpha, IL-1beta and TNF-alpha secretion during in vivo/ex vivo cellular interactions with titanium and copper. Biomaterials. 2003;24:461–8.

    Article  CAS  PubMed  Google Scholar 

  61. Ma J, Ge J, Zhang S, Sun A, Shen J, Chen L, et al. Time course of myocardial stromal cell-derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction. Basic Res Cardiol. 2005;100:217–23.

    Article  CAS  PubMed  Google Scholar 

  62. Cheng Z, Liu X, Ou L, Zhou X, Liu Y, Jia X, et al. Mobilization of mesenchymal stem cells by granulocyte colony-stimulating factor in rats with acute myocardial infarction. Cardiovasc Drugs Ther. 2008;22:363–71.

    Article  CAS  PubMed  Google Scholar 

  63. Wang Y, Deng Y, Zhou GQ. SDF-1alpha/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model. Brain Res. 2008;1195:104–12.

    Article  CAS  PubMed  Google Scholar 

  64. Otsuru S, Tamai K, Yamazaki T, Yoshikawa H, Kaneda Y. Circulating bone marrow-derived osteoblast progenitor cells are recruited to the bone-forming site by the CXCR4/stromal cell-derived factor-1 pathway. Stem Cells. 2008;26:223–34.

    Article  CAS  PubMed  Google Scholar 

  65. Son BR, Marquez-Curtis LA, Kucia M, Wysoczynski M, Turner AR, Ratajczak J, et al. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells. 2006;24:1254–64.

    Article  CAS  PubMed  Google Scholar 

  66. Furze RC, Rankin SM. Neutrophil mobilization and clearance in the bone marrow. Immunology. 2008;125:281–8.

    Article  CAS  PubMed  Google Scholar 

  67. Nagase H, Miyamasu M, Yamaguchi M, Imanishi M, Tsuno NH, Matsushima K, et al. Cytokine-mediated regulation of CXCR4 expression in human neutrophils. J Leukoc Biol. 2002;71:711–7.

    CAS  PubMed  Google Scholar 

  68. Martin C, Burdon PC, Bridger G, Gutierrez-Ramos JC, Williams TJ, Rankin M. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity. 2003;19:583–93.

    Article  CAS  PubMed  Google Scholar 

  69. Boyan BD, Schwartz Z. Response of musculoskeletal cells to biomaterials. J Am Acad Orthop Surg. 2006;14:S157–62.

    PubMed  Google Scholar 

  70. Gronthos S, Simmons PJ, Graves SE, Robey PG. Integrin-mediated interactions between human bone marrow stromal precursor cells and the extracellular matrix. Bone. 2001;28:174–81.

    Article  CAS  PubMed  Google Scholar 

  71. Gronowicz G, McCarthy MB. Response of human osteoblasts to implant materials: integrin-mediated adhesion. J Orthop Res. 1996;14:878–87.

    Article  CAS  PubMed  Google Scholar 

  72. Setzer B, Bachle M, Metzger MC, Kohal R. J. The gene-expression and phenotypic response of hFOB 1.19 osteoblasts to surface-modified titanium and zirconia. Biomaterials. 2009;30:979–90.

    Article  CAS  PubMed  Google Scholar 

  73. Ogawa T, Nishimura I. Different bone integration profiles of turned and acid etched implants associated with modulated expression of extracellular matrix genes. Int J Oral Maxillofac Implants. 2003;18:200–10.

    PubMed  Google Scholar 

  74. Ozawa S, Ogawa T, Iida K, Sukotjo C, Hasegawa H, Nishimura RD, et al. Ovariectomy hinders the early stage of bone-implant integration: histomorphometric, biomechanical, and molecular analyses. Bone. 2002;30:137–43.

    Article  CAS  PubMed  Google Scholar 

  75. Hughes DE, Salter DM, Dedhar S, Simpson R. Integrin expression in human bone. J Bone Miner Res. 1993;8:527–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The support from the Institute of Biomaterials and Cell Therapy (IBCT) (part of GöteborgBIO), the Swedish Research Council (grant K2009-52X-09495-22-3), Nobel Biocare AB, Göteborg, and Region Västra Götaland is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Omar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omar, O., Lennerås, M., Svensson, S. et al. Integrin and chemokine receptor gene expression in implant-adherent cells during early osseointegration. J Mater Sci: Mater Med 21, 969–980 (2010). https://doi.org/10.1007/s10856-009-3915-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3915-x

Keywords

Navigation