Skip to main content

Advertisement

Log in

Developments in injectable multiphasic biomaterials. The performance of microporous biphasic calcium phosphate granules and hydrogels

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Calcium phosphate bioceramic granules associated with hydrosoluble polymers were developed as bone substitutes for various maxillofacial and orthopaedic applications. These injectable bone substitutes, support and regenerate bone tissue and resorb after implantation. The efficiency of these multiphasic materials is due to the osteogenic and osteoconductive properties of the microporous biphasic calcium phosphate. The associated hydrosoluble polymers are considered as carriers in order to achieve the rheological properties of injectable bone substitutes (IBS). In this study, we used 2 semi synthetic hydrosoluble polymers of polysaccharidic origin. The hydroxy propyl methyl cellulose (HPMC), with and without silane, was combined with microporous BCP granules. The presence of silane induced considerable gelation of the suspension. The 2 IBS used (without gelation, IBS1, with gelation, IBS2) were implanted in critical size femoral epiphysis defects in rabbits. No foreign body reactions were observed in either sample. However, because of the higher density from gelation, cell colonisation followed by bone tissue ingrowth was delayed over time with IBS2 compared to the IBS1 without gelation. The results showed resorption of the BCP granule and bone ingrowth at the expense of both IBS with different kinetics. This study demonstrates that the hydrogel cannot be considered merely as a carrier. The gelation process delayed cell and tissue colonisation by slow degradation of the HPMC Si, compared to the faster release of HPMC with IBS1, in turn inducing faster permeability and spaces for tissue ingrowth between the BCP granules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Heary RF, Schlenk RP, Sacchieri TA, Barone D, Brotea C. Persistent iliac crest donor site pain: independent outcome assessment. Neurosurgery. 2002;50:510–6.

    Article  PubMed  Google Scholar 

  2. Silber JS, Anderson DG, DaVner SD, Brislin BT, Leland JM, Hilibrand AS, et al. Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine. 2003;28:134–9.

    Article  PubMed  Google Scholar 

  3. Tomford WW. Bone allografts: past, present and future. Cell Tissue Bank. 2000;1:105–9.

    Article  PubMed  Google Scholar 

  4. Daculsi G, LeGeros RZ, Nery E, Lynch K, Kerebel B. Transformation of biphasic calcium phosphate ceramics: ultrastructural and physico-chemical characterization. J Biomed Mater Res. 1989;23:883–94.

    Article  CAS  PubMed  Google Scholar 

  5. Daculsi G, LeGeros RZ, Heugheaert M, Barbieux I. Formation of carbonate apatite apatite crystals after implantation of calcium phosphate ceramics. Calcif Tissue Int. 1990;46:20–7.

    Article  CAS  PubMed  Google Scholar 

  6. Daculsi G, Baroth S, LeGeros R. 20 years of biphasic calcium phosphate bioceramics development and applications ICACC’09—January 18–23, 2009; Daytona Beach, FL, USA. J Am Ceram Soc (in press).

  7. Daculsi G. Biphasic calcium phosphate granules concept for injectable and mouldable bone substitute. Adv Sci Technol. 2006;49:9–13.

    Article  CAS  Google Scholar 

  8. Daculsi G, Weiss P, Bouler JM, Gauthier O. Aguado E Bcp/hpmc composite: a new concept for bone and dental substitution biomaterials. Bone. 1999;25:59–61.

    Article  Google Scholar 

  9. Daculsi G, Khairoun I, LeGeros RZ, Moreau F, Pilet P, Bourges X, et al. Bone ingrowth at the expense of a novel macroporous calcium phophate cement. Key Eng Mater. 2007;330/332:811–4.

    Article  Google Scholar 

  10. Lapkowski M, Weiss P, Daculsi G, Dupraz A. International patent WO 97/05911. 1997.

  11. Weiss P, Vinatier C, Guicheux J, Grimandi G, Daculsi G. A self setting hydrogel as an extracellular synthetic matrix for tissue engineering. Key Eng Mater. 2004;254–256:1107–10.

    Article  Google Scholar 

  12. Weiss P, Gauthier O, Bouler JM, Grimandi G, Daculsi G. Injectable bone substitute using a hydrophilic polymer. Bone. 1999;25(2 Suppl):67S–70S.

    Article  CAS  PubMed  Google Scholar 

  13. Turczyn R, Weiss P, Lapkowski M, Daculsi G. In situ self hardening bioactive composite for bone and dental surgery. J Biomater Sci Polym Ed. 2000;11:217–23.

    Article  CAS  PubMed  Google Scholar 

  14. Bourges X, Weiss P, Coudreuse A, Daculsi G, Legeay G. General properties of silated hydroxyethylcellulose for potential biomedical applications. Biopolymers. 2002;63:232–8.

    Article  CAS  PubMed  Google Scholar 

  15. Bourges X, Weiss P, Daculsi G, Legeay G. Synthesis and general properties of silated-hydroxypropyl methylcellulose in prospect of biomedical use. Adv Colloid Interface Sci. 2002;99:215–28.

    Article  CAS  PubMed  Google Scholar 

  16. Fatimi A, Tassin JF, Quillard S, Axelos MAV, Weiss P. The rheological properties of silated hydroxypropylmethylcellulose tissue engineering matrices. Biomaterials. 2008;29:533–43.

    Article  CAS  PubMed  Google Scholar 

  17. Stankewich CJ, Swionthowski MF, Tencer AF. Augmentation of femoral neck fracture fixation with an injectable calcium phosphate bone mineral cement J. Ortho Res. 1996;4:786–93.

    Article  Google Scholar 

  18. Ishikawa K. Calcium phosphate bone cement. In: Kokubo T, editor. Bioceramics and their clinical applications. Boca Raton, FL: Woodhead Publishing in Materials; 2008. p. 438–63.

    Google Scholar 

  19. Mahaguna V, TalbergR L, Peters JL, Adams S, Reynolds TD, Lam FY, et al. Influence of hydroxypropyl methyl cellulose polymer on in vitro and in vivo performance of controlled release tablets containing alprazolam. Eur J Pharm Biopharm. 2003;56:461–8.

    Article  CAS  PubMed  Google Scholar 

  20. Dick HB, Augustin AJ, Pfeiffer N. Osmolarity of various viscoelastic substances: comparative study. J Cataract Refract Surg. 2000;26:1242–6.

    Article  CAS  PubMed  Google Scholar 

  21. Fatimi A, Axelos AV, Tassin JF, Weiss P. Rheological characterization of self hardening hydrogel for tissue engineering applications: gel point determination and viscoelastic properties. Macromol Symp. 2008;266:12–6.

    Article  CAS  Google Scholar 

  22. Takebayashi T. Acute inhalation toxicity of high concentrations of silane in male ICR mice. Arch Toxic. 1993;67:55–60.

    Article  CAS  Google Scholar 

  23. Fujita H, Ido K, Matsuda Y, Lida H, Oka M, Kitamura Y, et al. Evaluation of bioactive bone cement in canine total hip arthroplasty. J Biomed Mater Res A. 1999;49:273–88.

    Article  Google Scholar 

  24. Borhane HF, Weiss P, Gauthier O, Rouillon T, Pilet P, Daculsi G, et al. Bone repair using a new injectable self crosslinkable bone substitute. J Orthop Res. 2006;24:628–35.

    Article  Google Scholar 

  25. Daculsi G, Rohanizadeh R, Weiss P, Bouler JM. Crystal polymer interaction with new injectable bone substitute; SEM and Hr TEM study. J Biomed Mater Res. 2000;50(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  26. Le Guehennec L, Layrolle P, Daculsi G. A review of bioceramics and fibrin sealant. Eur Cell Mater. 2004;8:1–11.

    CAS  PubMed  Google Scholar 

  27. Bourges X. Patent WO 2008/059 058, Hydrogel and biomedical applications there.

  28. Daculsi G, Bourges X, Goyenvalle E, Aguado E, Borget P. In vivo setting time effect on resorption and tissue ingrowth at the expense of Calcium Phosphate Cement (MCPC®). Key Eng. 2009, in press.

  29. Daculsi G, Uzel PA, Bourgeois N, Le François T, Rouvillain JL, Bourges X, Baroth S. New injectable bone substitute using reversible thermosensitive hydrogel and BCP granules: in vivo rabbit experiments. Key Eng Mater. 2009;396–398:457–60.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by ANR (RNTS 2002 and BioRimp). The authors would like to thank Dr T. Lefrançois of CIRAD INRA Antilles for his help with the animal experiments. They would also like to thank Kirsty Snaith (Médicis Traduction) for reading and revising the English of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Daculsi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daculsi, G., Uzel, A.P., Weiss, P. et al. Developments in injectable multiphasic biomaterials. The performance of microporous biphasic calcium phosphate granules and hydrogels. J Mater Sci: Mater Med 21, 855–861 (2010). https://doi.org/10.1007/s10856-009-3914-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3914-y

Keywords

Navigation