Skip to main content

Advertisement

Log in

Nanocrystalline hydroxyapatite for bone repair: an animal study

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Hydroxyapatite has become the most common material to replace bone or to guide its regeneration. Nanocrystalline hydroxyapatite suspension had been introduced in the clinical use recently under the assumption that small dimension of crystals could improve resorption. We studied the resorption and osteointegration of the nanocrystalline hydroxyapatite Ostim® in a rabbit model. The material was implanted either alone or in combination with autogenic or allogenic bone into distal rabbit femora. After survival time of 2, 4, 6, 8 and 12 weeks the implants had been evaluated by light and electron microscopy. We observed a direct bone contact as well as inclusion into soft tissue. But we could observe no or only marginal decay and no remarkable resorption in the vast majority of implants. In situ the nanocrystalline material mostly formed densely packed agglomerates which were preserved once included in bone or connective tissue. A serious side effect was the initiation of osteolysis in the femora far from the implantation site causing extended defects in the cortical bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bezrukov VM, Grigoriants LA, Zuev VP, Pankratov AS. The surgical treatment of jaw cysts using hydroxyapatite with an ultrahigh degree of dispersity. Stomatologiia (Mosk). 1998;77:31–5 (in Russian).

    CAS  Google Scholar 

  2. Busenlechner D, Tangl S, Mair B, Fugger G, Gruber R, Redl H, et al. Simultaneous in vivo comparison of bone substitutes in a guided bone regeneration model. Biomaterials. 2008;29(22):195–200.

    Article  Google Scholar 

  3. Cameron HU, Pilliar RM, MacNab I. The effect of movement on the bonding of porous metal to bone. J Biomed Mater Res. 1973;7(4):301–11.

    Article  CAS  PubMed  Google Scholar 

  4. Carmagnola D, Abati S, Celestino S, Chiapasco M, Bosshardt D, Lang NP. Oral implants placed in bone defects treated with Bio-Oss, Ostim-Paste or PerioGlas: an experimental study in the rabbit tibiae. Clin Oral Implant Res. 2008;19:1246–53.

    Article  Google Scholar 

  5. Chris Arts JJ, Verdonschot N, Schreurs BW, Buma P. The use of a bioresorbable nano-crystalline hydroxyapatite paste in acetabular bone impaction grafting. Biomaterials. 2006;27:1110–8.

    Article  CAS  PubMed  Google Scholar 

  6. Constantz BR, Ison IC, Fulmer MT, Poser RD, Smith ST, Van Wagoner M, et al. Skeletal repair by in situ formation of the mineral phase of bone. Science. 1995;267:1796–9.

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Denissen HW, De Groot K, Makkes PC, Van Den Hooff A, Klopper PJ. Tissue response to dense apatite implants in rats. J Biomed Mater Res. 1980;14:83–6.

    Article  Google Scholar 

  8. Ducheyne P, De Meester P, Aernoudt E. Influence of a functional dynamic loading on bone ingrowth into surface pores of orthopedic implants. J Biomed Mater Res. 1977;11:811–38.

    Article  CAS  PubMed  Google Scholar 

  9. Eggli PS, Müller W, Schenk RK. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bone ingrowth and implant substitution. Clin Orthop Relat Res. 1988;232:127–38.

    CAS  PubMed  Google Scholar 

  10. Gerlach KL, Niehues D. Die Behandlung der Kieferzysten mit einem neuartigen nanopartikulären Hydroxylapatit. Mund Kiefer GesichtsChir. 2007;11:131–7.

    Article  CAS  PubMed  Google Scholar 

  11. Grigorian AS, Grigoriants LA, Podoinikova MN. A comparative analysis of the efficacy of different types of filling materials in the surgical elimination of tooth perforations (experimental morphological research). Stomatologiia (Mosk). 2000;79:9–13 (in Russian).

    CAS  Google Scholar 

  12. Heymann D, Guicheux J, Rousell AV.Ultrastructural evidence in vitro of osteoclast-induced degradation of calcium phosphate ceramic by simultaneous resorption and phagocytosis mechanisms. Histol Histopathol. 2001;16(1):37–44.

    CAS  PubMed  Google Scholar 

  13. Hing KA, Wilson LF, Buckland T. Comparative performance of three ceramic bone graft substitutes. Spine J. 2007;7:475–90.

    Article  PubMed  Google Scholar 

  14. Huber F-X, McArthur N, Hillmeier J, Kock HJ, Baier M, Diwo M, et al. Void filling of tibia compression fracture zones using a novel resorbable nanocrystalline hydroxyapatite paste in combination with a hydroxyapatite ceramic core: first clinical results. Arch Orthop Trauma Surg. 2006;126:533–40.

    Article  PubMed  Google Scholar 

  15. Huber FX, Berger I, McArthur N, Huber C, Kock HP, Hillmeier J, et al. Evaluation of a novel nanocrystalline hydroxyapatite paste and a solid hydroxyapatite ceramic for the treatment of critical size bone defects (CSD) in rabbits. J Mater Sci Mater Med. 2008;19:33–8.

    Article  CAS  PubMed  Google Scholar 

  16. Huja SS, Katona TR, Burr DB, Garetto LP, Roberts WE. Microdamage adjacent to endosseous implants. Bone. 1999;25:217–22.

    Article  CAS  PubMed  Google Scholar 

  17. Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat Res. 1981;157:259–78.

    CAS  PubMed  Google Scholar 

  18. Klein CPAT, de Groot K, Driessens AA, van der Lubbe HBM. A comparative study of different β-whitlockite ceramics in rabbit cortical bone with regard to their biodegradation behaviour. Biomaterials. 1986;7:144–6.

    Article  CAS  PubMed  Google Scholar 

  19. Klokkevold PR, Johnson P, Dadgostari S, Caputo A, Davies JE, Nishimura RD. Early endosseous integration enhanced by dual acid etching of titanium: a torque removal study in the rabbit. Clin Oral Implants Res. 2001;12:350–7.

    Article  CAS  PubMed  Google Scholar 

  20. Knaack D, Goad ME, Aiolova M, Rey C, Tofighi A, Chakravarthy P, et al. Resorbable calcium phosphate bone substitute. J Biomed Mater Res. 1998;43:399–409.

    Article  CAS  PubMed  Google Scholar 

  21. Müller-Mai CM, Voigt C, Gross U. Incorporation and degradation of hydroxyapatite implants of different surface roughness and surface structure in bone. Scanning Microsc. 1990;4:613–24.

    PubMed  Google Scholar 

  22. Müller-Mai CM, Voigt C, Hering A, Rahmanzadeh R, Gross U. Madreporic hydroxyapatite granulates for filling bone defects. Unfallchirurg 2001;104:221–9

    Article  PubMed  Google Scholar 

  23. Müller-Mai CM, Stupp SI, Voigt C, Gross U. Nanoapatite and organoapatite implants in bone: histology and ultrastructure of the interface. Unfallchirurg. 1995;29:9–18.

    Google Scholar 

  24. Ohmae M, Saito S, Morohashi T, Seki K, Qu H, Kanomi R, et al. A clinical and histological evaluation of titanium mini-implants as anchors for orthodontic intrusion in the beagle. Am J Orthod Dentofacial Orthop. 2001;5:489–97.

    Article  Google Scholar 

  25. Pankratov AS, Zuev VP, Alekseeva AN. The immunoadjuvant properties of hydroxyapatite with ultrahigh dispersity. Stomatologiia (Mosk). 1995;74(4):22–5 (in Russian).

    CAS  Google Scholar 

  26. Pilliar RM. In: Davies EJ, editor. The bone–biomaterial interface. Toronto: University of Toronto Press; 1991. p. 380–7.

  27. Pilliar RM, Deporter D, Watson PA. In: Vincenzini P, editor. Materials in clinical applications, advances in science and technology. Proceedings of the 8th CIMTEC world ceramic congress. Faenza, Italy: Techna; 1995. p. 569–79.

  28. Posner A. The mineral of bone. Clin Orthop Relat Res. 1985;200:87–99.

    CAS  PubMed  Google Scholar 

  29. Rothamel D, Schwarz F, Herten M, Engelhardt E, Donath K, Kuehn P, et al. Dimensional ridge alterations following socket preservation using a nanocrystalline hydroxyapatite paste: a histomorphometrical study in dogs. Int J Oral Maxillofac Surg. 2008;37:741–7.

    Article  CAS  PubMed  Google Scholar 

  30. Serra G, Morais LS, Elies CN, Meyers MA, Andrade L, Muller C, et al. Sequential bone healing of immediately loaded mini-implants. Am J Orthod Dentofacial Orthop. 2008;134:44–52.

    Article  PubMed  Google Scholar 

  31. Siebels W, Ascherl R, Scheer W, Heissler H, Blümel G. In: Hipp E, Gradinger R, Rechl H, editors. Zementlose Hüftgelenksendoprothetik, Gräfelfing, Demeter, 1986, 20–24.

  32. Slaets E, Naert I, Carmeliet G, Duyck. Early cortical bone healing around loaded titanium implants: a histological study in the rabbit. J Clin Oral Implants Res. 2009;2:126–34.

    Article  Google Scholar 

  33. Smeets R, Grosjean MB, Jelitte G, Heiland M, Kasaj A, Riediger D, et al. Hydroxyapatite bone substitute (Ostim) in sinus floor elevation. Maxillary sinus floor augmentation: bone regeneration by means of a nanocrystalline in-phase hydroxyapatite (Ostim). Schweiz Monatsschr Zahnmed. 2008;118:203–12.

    PubMed  Google Scholar 

  34. Sοballe K, Hansen ES, Brockstedt-Rasmussen H, Jorgensen PH, Bünger C. Tissue ingrowth into titanium and hydroxyapatite-coated implants during stable and unstable mechanical conditions. J Orthop Res. 1992;10:285–99.

    Article  Google Scholar 

  35. Sοballe K, Brockstedt-Rasmussen H, Hansen ES, Bünger C. Hydroxyapatite coating modifies implant membrane formation. Controlled micromotion studied in dogs. Acta Orthop. 1992;63:128–40.

    Article  Google Scholar 

  36. Spies C, Schnürer S, Gotterbarm T, Breusch S. Animal study of the bone substitute material ostim within osseous defects in Göttinger minipigs. Z Orthop Unfall. 2008;146:64–9.

    Article  CAS  PubMed  Google Scholar 

  37. Szmukler–Moncler S, Salama H, Reingewirtz Y, Dubruille JH. Timing of loading and effect of micromotion on bone-dental implant interface: review of experimental literature. J Biomed Mater Res. 1998;43:192–203.

    Article  PubMed  Google Scholar 

  38. Tadic D, Epple M. A thorough physicochemical characterization of 14 calcium phosphate based bone substitution materials in comparison to natural bone. Biomaterials. 2004;25:987–94.

    Article  CAS  PubMed  Google Scholar 

  39. Tadic D, Peters F, Epple M. Continuous synthesis of amorphous carbonated apatites. Biomaterials. 2002;23:2553–9.

    Article  CAS  PubMed  Google Scholar 

  40. Thorwarth WM, Schlegel KA, Srour S, Schulze-Mosgau S, Wiltfang J. Unter-suchung zur knöchernen regeneration ossärer Defekte unter Anwendung eines nanopartikulären hydroxylapatits (Ostim®). Implantologie. 2004;21(1):21–32.

    Google Scholar 

  41. Thorwarth WM, Schultze-Mosgau S, Kessler P, Wiltfang J, Schlegel JKA. Bone regeneration in osseous defects using a resorbable nanoparticular hydroxyl-apatite. J Oral Maxillofac Surg. 2005;63:1626–33.

    Article  PubMed  Google Scholar 

  42. Wehrbein H, Diedrich P. Endosseous titanium implants during and after orthodontic load-—an experimental study in the dog. Clin Oral Implants Res. 1993;4(2):76–82.

    Article  CAS  PubMed  Google Scholar 

  43. Wenisch S, Stahl JP, Horas U, Heiss C, Kilian O, Trinkaus K, et al. In vivo mechanisms of hydroxyapatite ceramic degradation by osteoclasts: fine structural microscopy. J Biomed Mater Res. 2003;67 A:713–8.

    Article  Google Scholar 

  44. Wippermann BW. Hydroxylapatit als Knochenersatzstoff. Hefte zu Unfallchirurg. 1996;260:1–108.

    Google Scholar 

  45. Yamada S, Heymann D, Bouler JM, Daculsi G. Osteoclastic resorption of biphasic calcium phosphate ceramic in vitro. J Biomed Mater Res. 1997;37:346–52.

    Article  CAS  PubMed  Google Scholar 

  46. Zuev VP, Dmitrieva LA, Pankratov AS, Filatova NA. The comparative characteristics of stimulators of reparative osteogenesis in the treatment of periodontal diseases. Stomatologiia (Mosk). 1996;75:31–35 (in Russian).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Brandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandt, J., Henning, S., Michler, G. et al. Nanocrystalline hydroxyapatite for bone repair: an animal study. J Mater Sci: Mater Med 21, 283–294 (2010). https://doi.org/10.1007/s10856-009-3859-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3859-1

Keywords

Navigation