Skip to main content

Advertisement

Log in

Development of nano-macroporous soda-lime phosphofluorosilicate bioactive glass and glass-ceramics

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

We have extended the usefulness of bioactive glass-ceramics for the repair and reconstruction of hard tissues by introducing F ions that are known to be beneficial, especially in dentistry. Nano-macro multimodal porosity in soda-lime phosphofluorosilicate bulk samples was introduced by the recently developed melt-quench-heat-etch method. The choice of starting glass composition is based on 48SiO2–2.7P2O5xCaF2yCaO–zNa2O where x = 0, 1, 4, 8, 10, 12, and (y + z) = 49.3 − x (mol%). The effect of thermal and chemical treatment on the microstructure of samples is characterized by SEM, XRD and EDX. We find the formation of many crystalline phases, but mainly sodium calcium silicate, calcium phosphate, fluorapatite and calcium silicate. The bioactivity of soda-lime phosphofluorosilicate glass-ceramics is assessed by monitoring the formation of hydroxyl apatite (HA) layer: fluorapatite phase accelerates the rate of HA layer formation; the initial composition and multi-modal porosity are other key parameters that impact the formation of HA. The present porous glass-ceramics should be superior candidates for use in dental bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. The sample ID indicates that the starting batch was made of 48 mol% SiO2and contained x mol% of CaF2. GI and GII refer to two growth temperatures of 750 or 1075°C, respectively.

References

  1. Li N, Jie Q, Zhu S, Wang R. Preparation and characterization of macroporous sol–gel bioglass. Ceram Int. 2005;31:641–6.

    Article  CAS  Google Scholar 

  2. Jones JR, Hench LL. Biomedical materials for new millennium: perspective on the future. Mater Sci Technol. 2001;17:891–900.

    CAS  Google Scholar 

  3. Lin FH, Hon MH. A study on bioglass ceramics in the Na2O–CaO–SiO2–P2O5 system. J Mater Sci. 1988;23:4295–9.

    Article  ADS  CAS  Google Scholar 

  4. De Aza PN, Luklinska ZB. Effect of glass-ceramic microstructure on its in vitro bioactivity. J Mater Sci Mater Med. 2003;14:891–8.

    Article  PubMed  Google Scholar 

  5. Merolli A, Leaali PT, Guidi PL, Gabbi C. Comparison in in-vivo response between a bioactive glass and a non-bioactive glass. J Mater Sci Mater Med. 2000;11:219–22.

    Article  PubMed  CAS  Google Scholar 

  6. Thompson ID, Hench LL. Mechanical properties of bioactive glasses, glass-ceramics and composities. Proc Inst Mech Eng Part H: J Eng Med. 1998;212:127–36.

    Article  CAS  Google Scholar 

  7. Holand W, Vogel W, Naumann K, Gummel J. Interface reactions between machinable bioactive glass-ceramics and bone. J Biomed Mater Res Part B. 1985;19:303–12.

    Article  CAS  Google Scholar 

  8. Kokubo T. Bioactive glass ceramics: properties and applications. Biomaterials. 1991;12:155–63.

    Article  PubMed  CAS  Google Scholar 

  9. Li P, Yang Q, Zhang F, Kokubo T. The effect of residual glassy phase in a bioactive glass-ceramic on the formation of its surface apatite layer in vitro. J Mater Sci Mater Med. 1992;3:452–6.

    Article  CAS  Google Scholar 

  10. Peitl O, Latorre G, Hench LL. Effect of crystallization on apatite-layer formation of bioactive 45S5. J Biomed Mater Res. 1996;30:509–14.

    Article  Google Scholar 

  11. Vallet-Regi M, Roman J, Padilla S, Doadrio JC, Gill FJ. Bioactivity and mechanical properties of SiO2–CaO–P2O5 glass-ceramics. J Mater Chem. 2005;15:1353–9.

    Article  CAS  Google Scholar 

  12. Moawad HHM, Jain H. Fabrication of nano-macro porous soda-lime phosphosilicate bioactive glass by the melt-quench method. Ceram Eng Sci Proc: Developments in Porous, Biological and Geopolymer Ceramics. 2008;28(9):183–95.

    Google Scholar 

  13. Sepulveda P, Jones JR, Hench LL. Bioactive sol–gel foams for tissue repair. J Biomed Mater Res Part A. 2002;59:340–8.

    Article  CAS  Google Scholar 

  14. Moawad HMM, Jain H. Creation of nano-macro interconnected porosity in bioactive glass-ceramic by the melt-quench-heat-etch method. J Am Ceram Soc. 2007;90:1934–6.

    Article  CAS  Google Scholar 

  15. Marques AC, Jain H, Almeida RM. Sol–gel derived nano/macroporous monolithic scaffolds. Eur J Glass Sci Technol. 2007;48:65–8.

    CAS  Google Scholar 

  16. Nakanishi K, Minakuchi H, Soga N. Structure design of double-pore silica and its application to HPLC. J Sol–Gel Sci Technol. 1998;13:163–9.

    Article  CAS  Google Scholar 

  17. Nakanishi K. Pore structure control of silica gels based on phase separation. J Porous Mater. 1997;4:67–112.

    Article  CAS  Google Scholar 

  18. El-Batal HA, Azooz MA, Khalil EMA, Monem AS, Hamdy YM. Characterization of some bioglass-ceramics. Mater Chem Phys. 2003;80:599–609.

    Article  CAS  Google Scholar 

  19. Elemer TH, Nordberg ME, Carrier GB, Korda EJ. Phase separation in borosilicate glasses as seen by electron microscopy. J Am Ceram Soc. 1970;53:171–5.

    Article  Google Scholar 

  20. Brentrup GJ, Moawad HMM, Santos LF, Almedia RM, Jain H. Structure of Na2O–CaO–P2O5–SiO2 glass-ceramics with multimodal porosity. J Am Ceram Soc. 2009;92:249–52.

    Article  CAS  Google Scholar 

  21. Peitl O, Zanotto ED, Hench LL. Highly bioactive P2O5–Na2O–CaO–SiO2 glass-ceramics. J Non-Cryst Solids. 2001;292:115–26.

    Article  ADS  CAS  Google Scholar 

  22. Chen X, Hench LL, Greespan D, Zhong J, Zhang X. Investigation on phase separation, nucleation and crystallization in bioactive glass-ceramic containing fluorophlogopite and fluorapatite. Ceram Int. 1998;24:401–10.

    Article  CAS  Google Scholar 

  23. Lin CC, Huang LC, Shen P. Na2CaSi2O6–P2O5 based bioactive glasses. Part 1: elasticity and structure. J Non-Cryst Solids. 2005;351:3195–203.

    Article  ADS  CAS  Google Scholar 

  24. Mathew M, Takagi S. Structures of biological minerals in dental research. J Res Natl Inst Stand Technol. 2001;106:1035–44.

    CAS  Google Scholar 

  25. Abo-Naf SM, El Batal FH, Azooz MA. Characterization of some glasses in the system SiO2, Na2O · RO by infrared spectroscopy. Mater Chem Phys. 2003;77:846–52.

    Article  CAS  Google Scholar 

  26. Sitarz M, Handke M, Fojud Z, Jurga S. Spectroscopic studies of glassy phospho-silicate materials. J Mol Struct. 2005;744–747:621–6.

    Article  Google Scholar 

  27. El Batal FH, Elkheshen A. Characterization of some glasses in the system SiO2, Na2O · RO by infrared spectroscopy. Mater Chem Phys. 2008;110:352–62.

    Article  CAS  Google Scholar 

  28. Saiz E, Goldman M, Gomez-Vega JM, Tomsia AP, Marshall GW, Marshall SJ. In vitro behavior of silicate glass coatings on Ti6Al4V. Biomaterials. 2002;23:3749–56.

    Article  PubMed  CAS  Google Scholar 

  29. Pereira MM, Clark AE, Hench LL. Calcium phosphate formation on sol–gel-derived bioactive glasses in vitro. J Biomed Mater Res Part A. 1994;28:693–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was initiated and continued as an international collaboration with support from National Science Foundation (International Materials Institute for New Functionality in Glass (DMR-0409588) and Materials World Network (DMR-0602975) programs).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Jain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moawad, H.M.M., Jain, H. Development of nano-macroporous soda-lime phosphofluorosilicate bioactive glass and glass-ceramics. J Mater Sci: Mater Med 20, 1409–1418 (2009). https://doi.org/10.1007/s10856-009-3711-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3711-7

Keywords

Navigation