Skip to main content

Advertisement

Log in

Comparison of an experimental bone cement with a commercial control, Hydroset™

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Glass polyalkenoate cements based on strontium calcium zinc silicate glasses (Zn-GPCs) and high molecular weight polyacrylic acids (PAA) (MW; 52,000–210,000) have been shown to exhibit mechanical properties and in vitro bioactivity suitable for arthroplasty applications. Unfortunately, these formulations exhibit working times and setting times which are too short for invasive surgical applications such as bone void filling and fracture fixation. In this study, Zn-GPCs were formulated using a low molecular weight PAA (MW; 12,700) and a modifying agent, trisodium citrate dihydrate (TSC), with the aim of improving the rheological properties of Zn-GPCs. These novel formulations were then compared with commercial self-setting calcium phosphate cement, Hydroset™, in terms of compressive strength, biaxial flexural strength and Young’s modulus, as well as working time, setting time and injectability. The novel Zn-GPC formulations performed well, with prolonged mechanical strength (39 MPa, compression) greater than both vertebral bone (18.4 MPa) and the commercial control (14 MPa). However, working times (2 min) and rheological properties of Zn-GPCs, though improved, require further modifications prior to their use in minimally invasive surgical techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W. Petty, J. Bone Jt. Surg. 60a, 492–497 (1978)

    CAS  Google Scholar 

  2. W. Petty, J. Bone Jt. Surg. 60a, 752–756 (1978)

    Google Scholar 

  3. R.S. Laskin, Controversies in Total Knee Arthroplasty (University press, Oxford; New York, 2001)

    Google Scholar 

  4. I.H. Lieberman, D. Togawa, M.M. Kayanja, Spine J. 5, S305–S316 (2005). doi:10.1016/j.spinee.2005.02.020

    Article  Google Scholar 

  5. E. Erbe, T. Clineff, G. Gualtieri, Eur. Spine J. 10, S147–S152 (2001). doi:10.1007/s005860100288

    Article  PubMed  Google Scholar 

  6. M. Shen, H. Bae, P. Maurer, W. Peppelman, W. Beutler, R. Linovitz, E. Westerlund, T. Peppers, I. Lieberman, C. Kim, F. Girardi, Spine J. 6, 27S–28S (2006). doi:10.1016/j.spinee.2006.06.076

    Article  Google Scholar 

  7. H. Darmani, A.S. Al-Hiyasat, Dent. Mater. 22, 353–358 (2006). doi:10.1016/j.dental.2005.04.029

    Article  PubMed  CAS  Google Scholar 

  8. D. Boyd, M. Towler, A. Wren, O. Clarkin, J. Mater. Sci. Mater. Med. 19, 1745–1752 (2008). doi:10.1007/s10856-007-3363-4

    Article  PubMed  CAS  Google Scholar 

  9. www.orthovita.com

  10. H.P. Hatten, Osteoporos. Int. 18, S219 (2007). S219

    Google Scholar 

  11. C.D. Friedman, P.D. Costantino, S. Takagi, L.C. Chow, J. Biomed. Mater. Res. 43, 428–432 (1998). doi:10.1002/(SICI)1097-4636(199824)43:4<428::AID-JBM10>3.0.CO;2-0

    Article  PubMed  CAS  Google Scholar 

  12. M.T. Fulmer, I.C. Ison, C.R. Hankermayer, B.R. Constantz, J. Ross, Biomaterials 23, 751–755 (2002). doi:10.1016/S0142-9612(01)00180-6

    Article  PubMed  CAS  Google Scholar 

  13. B. Hess, G. Insley, M. Murphy, in Injury 3rd European Clinical Symposium on Tissue Engineering and Bone Regeneration, 14–16 September 2006, vol. 37 (2006), p. S3

  14. S. Larsson, T.W. Bauer, Clin. Orthop. Relat. Res. 395, 23–32 (2002). doi:10.1097/00003086-200202000-00004

    Article  PubMed  Google Scholar 

  15. C.-H. Tsai, R.-M. Lin, C.-P. Ju, J.-H. Chern Lin, Biomaterials 29, 984–993 (2008). doi:10.1016/j.biomaterials.2007.10.014

    Article  PubMed  CAS  Google Scholar 

  16. E.M. Ooms, J.G.C. Wolke, M.T. van de Heuvel, B. Jeschke, J.A. Jansen, Biomaterials 24, 989–1000 (2003). doi:10.1016/S0142-9612(02)00438-6

    Article  PubMed  CAS  Google Scholar 

  17. Stryker, HydroSet™ Injectable HA Bone Substitute; Product Brochure (2006)

  18. Stryker, Hydroset Injectable HA Bone Substitute; Instructions for Use. Rev A

  19. J.W. Nicholson, Biomaterials 19, 485–494 (1998). doi:10.1016/S0142-9612(97)00128-2

    Article  PubMed  CAS  Google Scholar 

  20. P.V. Hatton, K. Hurrell-Gillingham, I.M. Brook, J. Dent. 34, 598–601 (2006). doi:10.1016/j.jdent.2004.10.027

    Article  PubMed  CAS  Google Scholar 

  21. K. Hoang-Xuan, P. Perrotte, F. Dubas, J. Philippon, F.M. Poisson, Lancet 347, 910–911 (1996). doi:10.1016/S0140-6736(96)91399-9

    Article  PubMed  CAS  Google Scholar 

  22. E. Reusche, J. Rohwer, W. Forth, J. Helms, G. Geyer, Lancet 345, 1633–1634 (1995). doi:10.1016/S0140-6736(95)90138-8

    Article  PubMed  CAS  Google Scholar 

  23. P. Hantson, P. Mahieu, M. Gersdorff, C.J.M. Sindic, R. Lauwerys, Lancet 344, 1634–1647 (1994). doi:10.1016/S0140-6736(94)90446-4

    Article  Google Scholar 

  24. E. Reusche, P. Pilz, G. Oberascher, B. Lindner, R. Egensperger, K. Gloeckner, E. Trinka, B. Iglseder, Hum. Pathol. 32, 1136–1140 (2001). doi:10.1053/hupa.2001.28251

    Article  PubMed  CAS  Google Scholar 

  25. D. Boyd, O.M. Clarkin, A.W. Wren, M.R. Towler, Acta Biomater. (in press, accepted manuscript)

  26. D. Boyd, M.R. Towler, J. Mater. Sci. Mater. Med. 16, 843–850 (2005). doi:10.1007/s10856-005-3578-1

    Article  PubMed  CAS  Google Scholar 

  27. D. Boyd, H. Li, D.A. Tanner, M.R. Towler, J.G. Wall, J. Mater. Sci. Mater. Med. 17, 489–494 (2006). doi:10.1007/s10856-006-8930-6

    Article  PubMed  CAS  Google Scholar 

  28. D. Boyd, M.R. Towler, R.V. Law, R.G. Hill, J. Mater. Sci. Mater. Med. 17, 397–402 (2006). doi:10.1007/s10856-006-8465-x

    Article  PubMed  CAS  Google Scholar 

  29. M.R. Towler, S. Kenny, D. Boyd, T. Pembroke, M. Buggy, R.G. Hill, Biomed. Mater. Eng. 14, 565–572 (2004)

    PubMed  CAS  Google Scholar 

  30. M.R. Towler, S. Kenny, D. Boyd, T. Pembroke, M. Buggy, A. Guida, R.G. Hill, J. Mater. Sci. Mater. Med. 17, 835–839 (2006). doi:10.1007/s10856-006-9843-0

    Article  PubMed  CAS  Google Scholar 

  31. G. Lewis, J. Biomed. Mater. Res. B Appl. Biomater. 76B, 456–468 (2006). doi:10.1002/jbm.b.30398

    Article  CAS  Google Scholar 

  32. G. Lewis, M. Carroll, J. Biomed. Mater. Res. 63, 191–199 (2002). doi:10.1002/jbm.10127

    Article  PubMed  CAS  Google Scholar 

  33. M. Nicholas, M. Waters, K. Holford, G. Adusei, J. Mater. Sci. Mater. Med. 18, 1407–1412 (2007). doi:10.1007/s10856-007-0125-2

    Article  PubMed  CAS  Google Scholar 

  34. S. Sarda, E. Fernández, J. Llorens, S. Martínez, M. Nilsson, J.A. Planell, J. Mater. Sci. Mater. Med. 12, 905–909 (2001). doi:10.1023/A:1012832325957

    Article  PubMed  CAS  Google Scholar 

  35. D.C. Watts, E.C. Combe, E.H. Greener, J. Oral Rehabil. 8, 61–67 (1981). doi:10.1111/j.1365-2842.1981.tb00476.x

    Article  PubMed  CAS  Google Scholar 

  36. R.G. Hill, A.D. Wilson, J. Dent. Res. 67, 1446–1450 (1988)

    PubMed  CAS  Google Scholar 

  37. S.V. Kikai, J. Jpn. Soc. Dent. Mater. Devices 8, 436 (1989)

    Google Scholar 

  38. A. Wren, D. Boyd, M.R. Towler, J. Mater. Sci. Mater. Med. 19, 1737–1743 (2008). doi:10.1007/s10856-007-3287-z

    Article  PubMed  CAS  Google Scholar 

  39. D. Boyd, M. Towler, S. Watts, R. Hill, A. Wren, O. Clarkin, J. Mater. Sci. Mater. Med. 19, 953–957 (2008). doi:10.1007/s10856-006-0060-7

    Article  PubMed  CAS  Google Scholar 

  40. ISO 9917 Specification for Dental Water-based Cements (1994)

  41. J.A. Williams, R.W. Billington, G.J. Pearson, Dent. Mater. 18, 376–379 (2002). doi:10.1016/S0109-5641(01)00053-7

    Article  PubMed  CAS  Google Scholar 

  42. W.A.J. Higgs, P. Lucksanasombool, R.J.E.D. Higgs, M.V. Swain, J. Biomed. Mater. Res. 58, 188–195 (2001). doi:10.1002/1097-4636(2001)58:2<188::AID-JBM1006>3.0.CO;2-V

    Article  PubMed  CAS  Google Scholar 

  43. A.O. Akinmade, J.W. Nicholson, J. Mater. Sci. Mater. Med. 6, 483–485 (1995). doi:10.1007/BF00123374

    Article  CAS  Google Scholar 

  44. M. Bohner, G. Baroud, Biomaterials 26, 1553–1563 (2005). doi:10.1016/j.biomaterials.2004.05.010

    Article  PubMed  CAS  Google Scholar 

  45. C.M. Guldberg, P. Waage, Forhandlinger: Videnskabs-selskabet i Christiana 35 (1864)

  46. D. Boyd, M.R. Towler, J. Mater. Sci. Mater. Med. V16, 843–850 (2005). doi:10.1007/s10856-005-3578-1

    Article  Google Scholar 

  47. B. Fennell, R.G. Hill, J. Mater. Sci. 36, 5177–5183 (2001). doi:10.1023/A:1012441727897

    Article  CAS  Google Scholar 

  48. G.J.P. Fleming, A.A. Farooq, J.E. Barralet, Biomaterials 24, 4173–4179 (2003). doi:10.1016/S0142-9612(03)00301-6

    Article  PubMed  CAS  Google Scholar 

  49. A.E. Kaplan, J. Williams, R.W. Billington, M. Braden, J. Oral Rehabil. 31, 373–378 (2004). doi:10.1046/j.1365-2842.2003.01234.x

    Article  PubMed  CAS  Google Scholar 

  50. C. Crowley, J. Doyle, M. Towler, N. Rushe, S. Hampshire, J. Mater. Sci. Mater. Med. 18, 1497–1506 (2007). doi:10.1007/s10856-007-0128-z

    Article  PubMed  CAS  Google Scholar 

  51. A. Mitsuhashi, K. Hanaoka, T. Teranaka, Dent. Mater. 19, 747–757 (2003). doi:10.1016/S0109-5641(03)00022-8

    Article  PubMed  CAS  Google Scholar 

  52. L.H. Prentice, M.J. Tyas, M.F. Burrow, Dent. Mater. 21, 505–510 (2005). doi:10.1016/j.dental.2004.07.016

    Article  PubMed  CAS  Google Scholar 

  53. K. Goto, N. Tajima, E. Chosa, K. Totoribe, H. Kuroki, Y. Arizumi, T. Arai, J. Orthop. Sci. V7, 243–246 (2002). doi:10.1007/s007760200040

    Article  Google Scholar 

  54. B. Fennell, R.G. Hill, J. Mater. Sci. 36, 5193–5202 (2001). doi:10.1023/A:1012445928805

    Article  CAS  Google Scholar 

  55. G.H. Bell, O. Dunbar, J.S. Beck, A. Gibt, Calcif. Tissue Int. 1, 75–86 (1966)

    Google Scholar 

  56. S. Majumdar, M. Kothari, P. Augat, D.C. Newitt, T.M. Link, J.C. Lin, T. Lang, Y. Lu, H.K. Genant, Bone 22, 445–454 (1998). doi:10.1016/S8756-3282(98)00030-1

    Article  PubMed  CAS  Google Scholar 

  57. D. Boyd, O.M. Clarkin, A.W. Wren, M.R. Towler, Acta Biomater. 4, 425–431 (2008). doi:10.1016/j.actbio.2007.07.010

    Article  PubMed  CAS  Google Scholar 

  58. J.E. Barralet, M. Hofmann, L.M. Grover, U. Gbureck, Adv. Mater. 15, 2091–2094 (2003). doi:10.1002/adma.200305469

    Article  CAS  Google Scholar 

  59. U. Gbureck, J.E. Barralet, K. Spatz, L.M. Grover, R. Thull, Biomaterials 25, 2187–2195 (2004). doi:10.1016/j.biomaterials.2003.08.066

    Article  PubMed  CAS  Google Scholar 

  60. F.T. Mariño, J. Torres, M. Hamdan, C. Rueda, R. Enrique, C.L., J. Biomed. Mater. Res. B Appl. Biomater. 83B, 571–579 (2007) doi:10.1002/jbm.b.30830

  61. J.E. Barralet, L.M. Grover, U. Gbureck, Biomaterials 25, 2197–2203 (2004). doi:10.1016/j.biomaterials.2003.09.085

    Article  PubMed  CAS  Google Scholar 

  62. J.W. Nicholson, J. Mater. Sci. Mater. Med. 7, 241–244 (1996). doi:10.1007/BF00119738

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Towler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarkin, O.M., Boyd, D., Madigan, S. et al. Comparison of an experimental bone cement with a commercial control, Hydroset™. J Mater Sci: Mater Med 20, 1563–1570 (2009). https://doi.org/10.1007/s10856-009-3701-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3701-9

Keywords

Navigation