Skip to main content
Log in

Improvement of viral recombinant protein-based immunoassays using nanostructured hybrids as solid support

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Protein adsorption onto solid surfaces is a complex process playing an important role in biological systems, being crucial to maintain the three-dimensional conformation during molecules interaction. Polymers hybrid network could be used to perform immunoassays with the required high level specificity. We have developed a novel route for incorporating recombinant protein from Bovine Herpesvirus into a network using as template Poly(vinyl alcohol) chemically tailored with five organosilanes followed by FTIR spectroscopy characterization. Protein expressed in E. coli was incorporated into hybrid network; all the PVA-hybrids interacted with this biomolecule and FTIR vibrational bands have endorsed the results. PVA hybrids modified with 3-(triethoxysilyl) propylisocyanate-TESPI presented the best result in the immunoassay, enhancing the sera specificity in comparison with the commercial microplate. We have successfully developed organic–inorganic hybrid based on PVA-silane to be used in serological tests with recombinant protein as a promising tool for the development and production new diagnostic assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H.S. Mansur, R.L. Oréfice, A.A.P. Mansur, Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer (Guildf) 45, 7193 (2004). doi:10.1016/j.polymer.2004.08.036

    Article  CAS  Google Scholar 

  2. A.E. Lima-Barros, A.M.P. Almeida, L.B. Carvalho Júnior, W.M. Azevedo, Polysiloxane/PVA—glutaraldehyde hybrid composite as solid phase for immunodetections by ELISA. Braz. J. Med. Biol. Res. 35, 459 (2002)

    Article  PubMed  CAS  Google Scholar 

  3. Y. Wang, J.L. Robertson, W.B. Spillman Jr, R.O. Claus, Effects of the chemical structure and the surface properties of polymeric biomaterials on their biocompatibility. Pharm. Res. 21, 1362 (2004). doi:10.1023/B:PHAM.0000036909.41843.18

    Article  PubMed  CAS  Google Scholar 

  4. E.F. Reis, F.S. Campos, A.P. Lage, R.C. Leite, L.G. Heneine, W.L. Vasconcelos et al., Synthesis and characterization of poly (vinyl alcohol) hydrogels and hybrids for rMPB70 protein adsorption. Mater. Res. 9, 185 (2006). doi:10.1590/S1516-14392006000200014

    Google Scholar 

  5. D.A. Afonso, L.S. Ortega, R.A. Redondo, G.S. Trindade, E.F. Barbosa-Stancioli, Characterization of field bovine herpesvirus samples using random amplified polymorphic DNA (RAPD). J. Virol. Methods 140(1–2), 200 (2007). doi:10.1016/j.jviromet.2006.10.010

    Article  PubMed  CAS  Google Scholar 

  6. O.P. Surujballi, M. Mallory, An indirect enzyme-linked immunosorbent assay for the detection of bovine anti-bodies to multiple Leptospira serovars. Can. J. Vet. Res. 68, 1 (2004)

    PubMed  CAS  Google Scholar 

  7. G. Andrade, E.F. Barbosa-Stancioli, A.A. Piscitelli-Mansur, W.L. Vasconcelos, H.S. Mansur, Design of novel hybrid organic–inorganic nanostructured biomaterials for immunoassay applications. Biomed. Mater. 1, 221 (2006). doi:10.1088/1748-6041/1/4/008

    Article  PubMed  ADS  CAS  Google Scholar 

  8. G.I. Andrade, E.F. Barbosa-Stancioli, A.A. Piscitelli-Mansur, W.L. Vasconcelos, H.S. Mansur, Small-angle X-ray scattering and FTIR characterization of nanostructured poly (vinyl alcohol)/silicate hybrids for immunoassay applications. J. Mater. Sci. 43, 450–463 (2008)

    Article  CAS  ADS  Google Scholar 

  9. S.J. Hopkins, A. Wormall, Phenyl isocyanate protein derivatives and their immunological properties—the amino-acid derivatives and serological inhibition tests. Biochem. J. 28, 228 (1934)

    PubMed  CAS  Google Scholar 

  10. W.E. Gaunt, A. Wormall, The action of phenyl isocyanate on insulin. Biochem. J. 30, 1914 (1936)

    Google Scholar 

  11. B. Perdiguero, R. Blasco, Interaction between vaccinia virus extracellular virus envelope A33 and B5 glycoproteins. J. Virol. 80, 8763 (2006). doi:10.1128/JVI.00598-06

    Article  PubMed  CAS  Google Scholar 

  12. W.E. Brown, A.H. Green, T.E. Cedel, J. Cairns, Biochemistry of protein-isocyanate in teractions: a comparison of the effects of aryl vs. alkyl isocyanates. Environ. Health Perspect. 72, 5 (1987). doi:10.2307/3430269

    Article  PubMed  CAS  Google Scholar 

  13. J. Habsuda, G.P. Simon, Y.B. Cheng, D.G. Hewitt, D.A. Lewis, H. Toh, Organic–inorganic hybrids derived from 2-hydroxyethylmethacrylate and (3-methacryloyloxypropyl)trimethoxysilane. Polymer (Guildf) 43, 4123 (2002). doi:10.1016/S0032-3861(02)00246-X

    CAS  Google Scholar 

  14. I.C. Shekarchi, J.L. Sever, Y.J. Lee, G. Castellano, D.L. Madden, Evaluation of various plastic microtiter plates with measles, toxoplasma, gamma globulin antigens in enzyme-linked immunosorbent assays. J. Clin. Microbiol. 19, 89 (1984)

    PubMed  CAS  Google Scholar 

  15. J. Wheeler, J. Simpson, A.R. Morley, Routine and rapid enzyme linked immunosorbent assays for circulating anti-glomerular basement membrane antibodies. J. Clin. Pathol. 41, 163 (1988). doi:10.1136/jcp.41.2.163

    Article  PubMed  CAS  Google Scholar 

  16. D. Avnir, S. Braun, O. Lev, M. Ottolenghi, Enzymes and other proteins entrapped in sol–gel materials. Chem. Mater. 6, 1605 (1994). doi:10.1021/cm00046a008

    Article  CAS  Google Scholar 

  17. J. Livage, C. Roux, J.M. Da Costa, J.F. Quinson, I. Desportes, Immunoassays in sol–gel matrices. J. Sol–Gel. Sci. Technol. 7, 45 (1996). doi:10.1007/BF00401882

    Article  CAS  Google Scholar 

  18. L.L. Hench, Sol–gel materials for bioceramic applications. Curr. Opin. Solid State Mater. Sci. 2, 604 (1997). doi:10.1016/S1359-0286(97)80053-8

    Article  CAS  Google Scholar 

  19. I. Gill, A. Ballesteros, Bioencapsulation within synthetic polymers (Part 1): sol–gel encapsulated biologicals. Trends Biotechnol. 18, 282 (2000). doi:10.1016/S0167-7799(00)01457-8

    Article  PubMed  CAS  Google Scholar 

  20. W. Jin, J.D. Brennan, Properties and applications of proteins encapsulated within sol–gel derived materials. Anal. Chim. Acta 461, 1 (2002). doi:10.1016/S0003-2670(02)00229-5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge CNPq/FAPEMIG/CAPES for financial support on this Project. HS Mansur, EF Barbosa-Stancioli and G. I. Andrade received research fellowship from CNPq, and R. M. Palhares and A. A. P. Mansur received fellowship from FAPEMIG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edel Figueiredo Barbosa-Stancioli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mansur, H.S., Palhares, R.M., Andrade, G.I. et al. Improvement of viral recombinant protein-based immunoassays using nanostructured hybrids as solid support. J Mater Sci: Mater Med 20, 513–519 (2009). https://doi.org/10.1007/s10856-008-3606-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3606-z

Keywords

Navigation