Skip to main content
Log in

XPS and biocompatibility studies of titania film on anodized NiTi shape memory alloy

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A dense titania film is fabricated in situ on NiTi shape memory alloy (SMA) by anodic oxidation in a Na2SO4 electrolyte. The microstructure of the titania film and its influence on the biocompatibility of NiTi SMA are investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICPMS), hemolysis analysis, and platelet adhesion test. The results indicate that the titania film has a Ni-free zone near the surface and can effectively block the release of harmful Ni ions from the NiTi substrate in simulated body fluids. Moreover, the wettability, hemolysis resistance, and thromboresistance of the NiTi sample are improved by this anodic oxidation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Duerig, A. Pelton, D. Stockel, Mater. Sci. Eng. A 149, 273–275 (1999). doi:10.1016/S0921-5093(99)00294-4

    Google Scholar 

  2. K. Otsuka, C.M. Wayman, Shape Memory Materials (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  3. D.F. Williams, in Toxicology of Implanted Metals. Fundamental Aspects of Biocompatibility. CRC Series in Biocompatibility, vol II (CRC Press, Boca Raton, FL, 1981), p. 45

  4. R.E. Baier, R.C. Dutton, J. Biomed. Mater. Res. 3, 191 (1969). doi:10.1002/jbm.820030115

    Article  PubMed  CAS  Google Scholar 

  5. R.W.Y. Poon, K.W.K. Yeung, X.Y. Liu, P.K. Chu, C.Y. Chung, W.W. Lu et al., Biomaterials 26, 2265 (2005). doi:10.1016/j.biomaterials.2004.07.056

    Article  PubMed  CAS  Google Scholar 

  6. J. Choi, D. Bogdanski, M. Köller, S.A. Esenwein, D. Müller, G. Muhr, M. Epple, Biomaterials 24, 3689 (2003). doi:10.1016/S0142-9612(03)00241-2

    Article  PubMed  CAS  Google Scholar 

  7. T. Kokubo, F. Miyaji, H.M. Kim, T. Nakamura, J. Am. Ceram. Soc. 79, 1127 (1996). doi:10.1111/j.1151-2916.1996.tb08561.x

    Article  CAS  Google Scholar 

  8. P. Habibovic, F. Barrĕre, C.A. Van Blitterswijk, K. De Groot, P. Layrolle, J. Am. Ceram. Soc. 85, 517 (2002)

    CAS  Google Scholar 

  9. C.L. Chu, S.K. Wu, Y.C. Yen, Mater. Sci. Eng. A 216, 193 (1996). doi:10.1016/0921-5093(96)10409-3

    Article  Google Scholar 

  10. M.H. Wong, F.T. Cheng, H.C. Man, Mater. Lett. 61, 3391 (2007). doi:10.1016/j.matlet.2006.11.081

    Article  CAS  Google Scholar 

  11. C.L. Chu, T. Hu, S.L. Wu, Y.S. Dong, L.H. Yin, Y.P. Pu et al., Acta Biomater. 3, 795 (2007). doi:10.1016/j.actbio.2007.03.002

    Article  PubMed  CAS  Google Scholar 

  12. F.T. Cheng, P. Shi, H.C. Man, Mater. Lett. 59, 1516 (2005). doi:10.1016/j.matlet.2005.01.013

    Article  CAS  Google Scholar 

  13. F.T. Cheng, P. Shi, G.K.H. Pang, M.H. Wong, H.C. Man, J. Alloy Comp. 438, 238 (2007). doi:10.1016/j.jallcom.2006.08.020

    Article  CAS  Google Scholar 

  14. N. Huang, P. Yang, X. Cheng, Y.X. Leng, X.L. Zheng, G.J. Cai et al., Biomaterials 19, 771 (1998). doi:10.1016/S0142-9612(98)00212-9

    Article  CAS  Google Scholar 

  15. R. Ebert, M. Schaldach, in Ceramic As Material for Cardiovascular Device. World Congress on Medical Physics and Biomedical Engineering, Hamburg, 1982

  16. F. Gutmann, H. Keyzer, Modern Bioelectrochemistry (Plenum Press, New York, 1986)

    Google Scholar 

  17. F. Zhang, N. Huang, P. Yang, X.L. Zeng, Y.J. Mao, Z.H. Zheng et al., Surf. Coat. Tech. 84, 476 (1996). doi:10.1016/S0257-8972(96)02848-4

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work described in this article was supported by Program for New Century Excellent Talents (NCET-06-0464) in University of Ministry of Education of China, National Natural Science Foundation of China (Project No.: 50501007), Natural Science Foundation of Jiangsu Province (Project No.: BK2007515), National High-tech Program-863 Projects of China (Project No.: 2006AA03Z445), Nippon Sheet Glass Foundation for Materials Science and Engineering (NSG Foundation), City University of Hong Kong Strategic Research Grant (SRG) No. 7001999, Hong Kong Research Grants Council (RGC), Central Allocation Grant No. 8730021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. L. Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, C.L., Wang, R.M., Hu, T. et al. XPS and biocompatibility studies of titania film on anodized NiTi shape memory alloy. J Mater Sci: Mater Med 20, 223–228 (2009). https://doi.org/10.1007/s10856-008-3563-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3563-6

Keywords

Navigation