Skip to main content
Log in

Starch-based microspheres produced by emulsion crosslinking with a potential media dependent responsive behavior to be used as drug delivery carriers

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This paper describes the development and characterization of starch microspheres for being used as drug delivery carriers in tissue engineering applications. The developed starch microspheres can be further loaded with specific growth factors and immobilized in scaffolds, or administrated separately with scaffolds. Furthermore and due to the processing conditions used, it is expected that these microspheres can be also used to encapsulate living cells. The aim of this study was to evaluate the efficacy of this methodology for further studies with biologically active agents or living cells. The starch microspheres were prepared using an emulsion crosslinking technique at room temperature to allow for the loading of biologically active agents. A preliminary study was performed to evaluate the incorporation of a model drug (nonsteroidal anti-inflammatory drug-NSAID) and investigate its release profile as function of changes in the medium parameters, such as ionic strength and pH. The developed starch-based drug delivery system has shown to be dependent on the ionic strength of the release medium. From preliminary results, the release seems to be pH-dependent due to the drug solubility. It was found that the developed microspheres and the respective processing route are appropriate for further studies. In fact, and based in the processing conditions and characterization, the developed system present a potential for the loading of different growth factors or even living cells on future studies with these systems for improving bone regeneration in tissue engineering, especially because the crosslinking reaction of the microspheres takes place at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. B. MALAFAYA, G. A. SILVA, E. T. BARAN and R. L. REIS, Curr. Opin. Solid St. M. 6 (2002) 297.

    CAS  Google Scholar 

  2. P. B. MALAFAYA, G. A. SILVA, E. T. BARAN and R. L. REIS, Curr. Opin. Solid St. M. 6 (2002) 283.

    CAS  Google Scholar 

  3. C. M. ALVES, P. B. MALAFAYA, F. STAPPERS and R. L. REIS, in: “Key Eng Mat” (Trans. Tech. Publications, Zurich, 2003) 240-2, p. 725.

  4. H. S. AZEVEDO, F. M. GAMA and R. L. REIS, Biomacromolecules 4 (2003) 1703.

    Article  CAS  Google Scholar 

  5. L. F. BOESEL, J. F. MANO, C. ELVIRA, J. S. ROMÁN and R. L. REIS, in: “Advances on Biodegradable Polymers and plastics” (Kluwer Academic Publishers, Dordrecht, 2003), p. 243.

    Google Scholar 

  6. I. ESPIGARES, C. ELVIRA, J. F. MANO, B. VAZQUEZ, R. J. SAN and R. L. REIS, Biomaterials 23 (2002) 1883.

    Article  CAS  Google Scholar 

  7. M. E. GOMES, A. S. RIBEIRO, P. B. MALAFAYA, R. L. REIS and A. M. CUNHA, Biomaterials 22 (2001) 883.

    CAS  Google Scholar 

  8. M. E. GOMES, A. J. SALGADO and R. L. REIS, in: “Polymer based systems on tissue engineering, replacement and regeneration” (Kluwer Academic Publishers, Dordercht, 2002), p. 221.

    Google Scholar 

  9. M. E. GOMES, R. L. REIS, A. M. CUNHA, C. A. BLITTERSWIJK and J. D. DE BRUIJN, Biomaterials 22 (2001) 1911.

    CAS  Google Scholar 

  10. M. E. GOMES, V. I. SIKAVITSAS, E. BEHRAVESH, R. L. REIS and A. G. MIKOS, J. Biomed Mater. Res. 67A (2003) 87.

    Article  CAS  Google Scholar 

  11. I. B. LEONOR, A. ITO, K. ONUMA, N. KANZAKI and R. L. REIS, Biomaterials 24 (2003) 579.

    Article  CAS  Google Scholar 

  12. P. B. MALAFAYA, F. STAPPERS and R. L. REIS, in: “Key Eng Mat” (Trans Tech. Publications, Zurich, 2000) 192-1, p. 243.

  13. A. P. MARQUES, R. L. REIS and J. A. HUNT, Biomaterials 23 (2002) 1471.

    Article  CAS  Google Scholar 

  14. S. C. MENDES, R. L. REIS, Y. P. BOVELL, A. M. CUNHA, C. A. VAN BLITTERSWIJK and J. D. DE BRUIJN, Biomaterials 22 (2001) 2057.

    Article  CAS  Google Scholar 

  15. S. C. MENDES, J. BEZEMER, M. B. CLAASE, D. W. GRIJPMA, G. BELLIA, F. DEGLI-INNOCENTI, R. L. REIS, K. DE GROOT, C. A. VAN BLITTERSWIJK and J. D. DE BRUIJN, Tissue Eng. 9 Suppl 1 (2003) S91.

  16. G. A. SILVA, F. J. COSTA, O. P. COUTINHO, S. RADIN, P. DUCHEYNE and R. L. REIS, J. Biomed. Mater. Res. 70A (2004) 442.

    Article  CAS  Google Scholar 

  17. P. B. MALAFAYA, C. ELVIRA, A. GALLARDO, J. SAN ROMAN and R. L. REIS, J. Biomat. Sci.-Polym. E. 12 (2001) 1227.

    CAS  Google Scholar 

  18. E. T. BARAN and R. L. REIS, in: 18th European Conference on Biomaterials (Stuttgart, Germany, 2003) p. P106.

  19. G. A. SILVA, A. C. P. DIAS, O. P. COUTINHO and R. L. REIS, in: 18th European Conference on Biomaterials (Stuttgart, Germany, 2003) p. T111.

  20. C. ELVIRA, J. F. MANO, J. SAN ROMAN and R. L. REIS, Biomaterials 23 (2002) 1955.

    Article  CAS  Google Scholar 

  21. T. TAGUCHI, Clinical Pharmacokinetics 26 (1994) 275.

    CAS  Google Scholar 

  22. E. BJORK and P. EDMAN, Int. J. Pharm. 62 (1990) 187.

    Article  Google Scholar 

  23. A. K. FAHLVIK, E. HOLTZ, U. SCHRODER and J. KLAVENESS, Invest. Radiol. 25 (1990) 793.

    CAS  Google Scholar 

  24. A. SHEFER, S. SHEFER, J. KOST and R. LANGER, Macromolecules 25 (1992) 6756.

    CAS  Google Scholar 

  25. J. J. VAN SOEST and J. F. VLIEGENTHART, Trends Biotechnol. 15 (1997) 208.

    CAS  Google Scholar 

  26. L. ILLUM, N. FARRAJ, H. CRITCHLEY and S. S. DAVIS, Int. J. Pharm. 46 (1988) 261.

    CAS  Google Scholar 

  27. G. M. VANDENBOSSCHE, R. A. LEFEBVRE, G. A. DE WILDE and J. P. REMON, J. Pharm. Sci. 81 (1992) 245.

    CAS  Google Scholar 

  28. A. K. FAHLVIK, E. HOLTZ, P. LEANDER, U. SCHRODER and J. KLAVENESS, Invest Radiol 25 (1990) 113.

    CAS  Google Scholar 

  29. K. HOLMBERG, E. BJORK, B. BAKE and P. EDMAN, Rhinology 32 (1994) 74.

    CAS  Google Scholar 

  30. V. D. VILIVALAM, I. I. ILLUM and I. I. IQBAL, Pharm. Sci. & Techn. Today 3 (2000) 64.

    CAS  Google Scholar 

  31. J. E. MORMANN and H. R. MUHLEMANN, Caries Res 15 (1981) 166.

    CAS  Google Scholar 

  32. L. F. SIEW, A. W. BASIT and J. M. NEWTON, Eur. J. Pharm. Sci. 11 (2000) 133.

    CAS  Google Scholar 

  33. C. W. LEONG, J. M. NEWTON, A. W. BASIT, F. PODCZECK, J. H. CUMMINGS and S. G. RING, Eur. J. Pharm. Biopharm. 54 (2002) 291.

    CAS  Google Scholar 

  34. N. V. LARIONOVA, G. PONCHEL, D. DUCHENE and N. I. LARIONOVA, Int. J. Pharm. 189 (1999) 171.

    Article  CAS  Google Scholar 

  35. M. C. CONROY, E. J. RANDINITIS and J. L. TURNER, Clin. J. Pain. 7 Suppl 1 (1991) S44.

  36. R. CORTESI, E. ESPOSITO, G. LUCA and C. NASTRUZZI, Biomaterials 23 (2002) 2283.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrícia B. Malafaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malafaya, P.B., Stappers, F. & Reis, R.L. Starch-based microspheres produced by emulsion crosslinking with a potential media dependent responsive behavior to be used as drug delivery carriers. J Mater Sci: Mater Med 17, 371–377 (2006). https://doi.org/10.1007/s10856-006-8240-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-006-8240-z

Keywords

Navigation