Skip to main content
Log in

Studies on calcium deficient apatites structure by means of MAS-NMR spectroscopy

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The development of synthetic apatites that replicate the features and properties of the contained in natural tissues will help to diminish the misfit between artificial implants and natural hostesses but the structure of these compounds is still under discussion. The variability in Ca/P ratio of calcium deficient apatites has been explained through different models: surface adsorption, lattice substitution and intercrystalline mixtures of hydroxyapatite and octacalcium phosphate. This work investigates which of the models mentioned suits better in a range of samples. Hydroxyapatites obtained by precipitation, by hydrolysis of dicalcium phosphate and calcined samples with Ca/P ratio between 1.50 and 1.77 and specific surface area between 7 and 108 m2/g have been analysed. OCP and surface adsorption models suit better for great SSA particles and low Ca/P ratio while for smaller SSA particles the lattice substitution model is more accurate. SSA also plays the main role when the capacity to absorb substances is studied though their chemistry can not be explained solely in terms of surface reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. GROSS, J. N. HART and L. M. RODRIGUEZ-LORENZO, Key Eng Mater 218–220 (2002) 165.

    Google Scholar 

  2. J. C. ELLIOTT, Nature 230 (1971) 72.

    CAS  Google Scholar 

  3. M. I. KAY, R. A. YOUNG and A. S. POSNER, Nature 204 (1964) 1050.

    CAS  PubMed  Google Scholar 

  4. J. C. ELLIOTT, “Structure and Chemistry of the Apatites and Other Calcium Orthophosphates” (Amsterdam Elsevier, 1994) Vol. 18.

  5. L. M. RODRIGUEZ-LORENZO, J. N. HART and K. A. GROSS, J. Phys. Chem. B 107 (2003) 8316.

    Article  CAS  Google Scholar 

  6. M. I. KAY, R. A. YOUNG and A. S. POSNER, Nature 204 (1964) 1050.

    CAS  PubMed  Google Scholar 

  7. W. E. BROWN, Clin. Orthop. Rel. Res. 44 (1966) 205.

    CAS  Google Scholar 

  8. J. C. J. ARENDS, M. R. CHRISTOFFERSEN, H. ECKERT, B. O. FOWLER, J. C. HEUGHEABAERT, G. H. NANCOLLAS, J. P. YESINOWSKI and S. J. ZAWACKI, J. Cryst. Growth 84 (1987) 515.

    Article  CAS  Google Scholar 

  9. E. E. BERRY, J. Inorg. Nucl. Chem. 29 (1967) 317.

    Article  CAS  Google Scholar 

  10. W. E. BROWN, J. P. SMITH, J. R. LEHR and A. W. FRAZIER, Nature 196 (1962) 1050.

    CAS  Google Scholar 

  11. W. P. ROTHWELL, J. S. WAUGH and J. P. YESINOWSKI, J. Am. Chem. Soc. 102 (1980) 2637.

    Article  CAS  Google Scholar 

  12. J. P. YESINOWSKI and H. ECKERT, ibid. 109 (1987) 6274.

    Article  CAS  Google Scholar 

  13. K. BESHAH, C. REY, M. J. GLIMCHER, M. SCHIMIZU and R. G. GRIFFIN, J. Solid. State Chem. 84 (1990) 71.

    Article  CAS  Google Scholar 

  14. Y. WU, J. L. ACKERMAN, H. KIM, C. REY and A. G. BARROUG, J. Bone Miner. Res. 17 (2002) 472.

    CAS  PubMed  Google Scholar 

  15. T. ISOBE, S. NAKAMURA, R. NEMOTO, M. SENNA and H. SFIHI, J. Phys. Chem. B 106 (2002) 5169.

    Article  CAS  Google Scholar 

  16. J. P. YESINOWSKI in “Calcium Phosphate in Biological and Industrial Systems,” edited by A. Z. (Kluwer Academic Publishers, Boston, 1998).

    Google Scholar 

  17. L. M. RODRÍ GUEZ-LORENZO and M. VALLET-REGI, Chem. Mater. 12 (2000) 2460.

    Article  Google Scholar 

  18. A. MORTIER, J. LEMAITRE, L. RODRIQUE and P. G. ROUXHET, J. Solid. State Chem. 78 (1989) 215.

    Article  CAS  Google Scholar 

  19. R. M. WILSON, J. C. ELLIOTT, S. E. P. DOWKER and L. M. RODRIGUEZ-LORENZO, Biomaterials 26 (2005) 1317.

    Article  CAS  PubMed  Google Scholar 

  20. R. Z. Le GEROS, Calcif Tissue Int. 37 (1985) 194.

    CAS  PubMed  Google Scholar 

  21. B. O. FOWLER, Inorg. Chem. 13 (1974) 194.

    Article  CAS  Google Scholar 

  22. B. O. FOWLER, M. MARKOVIC and W. E. BROWN, Chem. Mater. 5 (1993) 1417.

    Article  CAS  Google Scholar 

  23. C. REY, B. COLLINS, T. GOEHL, I. R. DICKSON and G. M. J., Calcif. Tissue Int. 45 (1989) 157.

    CAS  PubMed  Google Scholar 

  24. K. SUDARSSANAN and R. A. YOUNG, Acta. Cryst. B 25 (1969) 1534.

    Article  Google Scholar 

  25. R. A. YOUNG and D. W. HOLCOMB, Calcif. Tissue Int. 36 (1984) 60.

    CAS  PubMed  Google Scholar 

  26. R. Z. LeGUEROS, “Calcium Phosphates in Oral Biology and Medicine”, (Karger Basel, 1991) Vol. 15.

  27. V. MICHEL, P. ILDEFONSE and G. MORIN, Appl. Geochem. 10 (1995) 145.

    Article  CAS  Google Scholar 

  28. R. Z. LEGEROS, “Calcium Phosphates in Oral Biology and Medicine” (Karger Basel, 1991) Vol. 15.

  29. L. M. RODRIGUEZ-LORENZO, J. N. HART and K. A. GROSS, Biomaterials 24 (2003) 3777.

    Article  PubMed  Google Scholar 

  30. W. E. BROWN, M. MATHEW and M. S. TUNG, Prog. Cryst. Growth Charact. 4 (1981) 59.

    Article  CAS  Google Scholar 

  31. R. M. WILSON, J. C. ELLIOTT, S. E. P. DOWKER and R. I. SMITH, Biomaterials 25 (2004) 2205.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Rodríguez-Lorenzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Lorenzo, L.M. Studies on calcium deficient apatites structure by means of MAS-NMR spectroscopy. J Mater Sci: Mater Med 16, 393–398 (2005). https://doi.org/10.1007/s10856-005-6977-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-005-6977-4

Keywords

Navigation