Skip to main content
Log in

Primary osteoblast cell response to sol-gel derived bioactive glass foams

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Bioactive glass macroporous structures were developed in this work to be used as scaffolds for bone tissue engineering applications. A sol-gel route was used to obtain glass foams with the introduction of a gas phase in the solution and by vigorous agitation of the sol-gel solution that contains a foam agent. Stable and homogeneous foams were formed near the gelation point, which were than dried and heat-treated. Macroporous structures with interconnected pores of up to 500 μ m, porosity as high as 88% and specific surface area of 92 m2/g were obtained. The porous glasses were tested in osteoblast cultures to evaluate adhesion, proliferation, collagen and alkaline phosphatase production. Osteoblast proliferation was higher in the presence of the foams as well as was the collagen secretion, when compared to control. The alkaline phosphatase production was not altered. Viable osteoblasts could be seen inside the foams, suggesting that the produced porous glass foams are a promising materials for bone repair, since it provides a good environment for the adhesion and proliferation of osteoblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. BAKSH, in “Bone Engineering,” edited by J. E. Davies (USA, 2000) p. 488.

  2. K. J. L. BURG, S. PORTER and J. F. KELLAN, Biomaterials 21 (2000) 2347.

    Article  PubMed  Google Scholar 

  3. M. M. PEREIRA, A. E. CLARK and L. L. HENCH, J. Biomed. Mat. Res. 28 (1994) 693.

    Article  Google Scholar 

  4. H. J. BREKKE and M. J. TOTH, ibid. 43 (1998) 380.

    Article  Google Scholar 

  5. D. C. GREENSPAN, J. P. ZHONG and D. L. WHELLER, in Proceedings of the 11 International Simposium Ceramics in Medicine (World Scientific, New York, 1998) p. 345.

  6. I. D. XYNOS, M. V. J. HUKKANEN, J. J. BATTEN, L. D. BUTTERY and L. L. HENCH, Calc. Tiss. Int. 67 (2000) 321.

    Article  Google Scholar 

  7. I. D. XYNOS, A. J. EDGARD, L. D. K. BUTTERY and L. L. HENCH, J. Biomed. Mat. Res. 55 (2001) 151.

    Article  Google Scholar 

  8. M. B. COELHO, I. R. SOARES, H. S. MANSUR and M. M. PEREIRA, Key. Eng. Mat. 240 (2003) 257.

    Google Scholar 

  9. P. SEPULVEDA, J. R. JONES and L. L. HENCH, J. Biomed. Mat. Res. 59 (2002) 340.

    Article  Google Scholar 

  10. J. R. JONES and L. L. HENCH, Key. Eng. Mat. 240 (2003) 209.

    Google Scholar 

  11. A. R. TEN CATE, in “Oral Histology” (Mosby, USA, 1994) p. 375.

    Google Scholar 

  12. I. A. SILVER and M. ERECINSKA, Biomaterials 22 (2001) 175.

    Article  PubMed  Google Scholar 

  13. M. AMARAL and M. A. COSTA, ibid. 23 (2002) 4897.

    Article  PubMed  Google Scholar 

  14. H. TULLBERG_REINERT and G. JUNDT, Histochem. Cell. Biol. 112 (1999) 271.

    Article  PubMed  Google Scholar 

  15. G. TAKAHASHI, Cell. 11 (1979) 114.

    Google Scholar 

  16. J. A. ROETHER, A. R. BOCCACCINI, L. L. HENCH, V. MAQUET, S. GAUTIER and R. JERôME, Biomaterials 23 (2002) 3871.

    Article  PubMed  Google Scholar 

  17. K. MATSUZAKA, X. F. WALBOOMERS, M. YOSHINARI, T. INOUE and J. A. JANSEN, ibid. 24 (2003) 2711.

    Article  PubMed  Google Scholar 

  18. P. SEPULVEDA, J. R. JONES and L. L. HENCH, J. Biomed. Mat. Res. 61 (2002) 301.

    Article  Google Scholar 

  19. P. VALERIO, M. M. PEREIRA, A. M. GOES and M. F. LEITE, Biomaterials, in press.

  20. D. M. REFFIT, N. OGSTON, R. JUGDAOHSINGH, H. F. CHEUNG and G. N. HAMPSON, Bone 32 (2003) 127.

    Article  PubMed  Google Scholar 

  21. V. MAQUET, A. R. BOCCACCINI, L. PRAVATA and R. JERôME, J. Biomed. Mat. Res. 66A (2003) 335.

    Article  Google Scholar 

  22. M. BOSETTI, L. ZANARDI, L. L. HENCH and M. CANNAS, J. Biomater. Res. 1 (2003) 89.

    Google Scholar 

  23. B. LYU, Zhongguo Ye. Xue. 15 (1993) 5.

    Google Scholar 

  24. S. C. MARKS and S. N. POPFF, Bone. Cell. Biology. 183 (1988) 1.

    Google Scholar 

  25. A. MYRDYCZ, D. CALLENS, K. KOT, F. MONCHAU, E. RADZISZEWSKI, A. LEFEBVRE and H. F. HILDEBRAND, Biomol. Engng. 19 (2002) 219.

    Article  Google Scholar 

  26. R. C. THOMSON, M. J. YAZEMSKI, J. M. POWERS and A. G. MIKOS, Biomaterials 19 (1998) 1935.

    Article  PubMed  Google Scholar 

  27. M. E. HASENBEIN, T. T. ANDERSEN and R. BIZIOS, ibid. 23 (2002) 3937.

    Article  PubMed  Google Scholar 

  28. A. SHIMAZU, I. IRATA and M. OKAZAKI, ibid. 25 (2004) 2577.

    Article  PubMed  Google Scholar 

  29. E. VERNE, M. BOSETTI, C. V. BROVARONE, C. MOISESCU, F. LUPO, S. SAPRIANO and M. CANNAS, ibid. 23 (2002) 3395.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Valerio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valerio, P., Guimaráes, M.H.R., Pereira, M.M. et al. Primary osteoblast cell response to sol-gel derived bioactive glass foams. J Mater Sci: Mater Med 16, 851–856 (2005). https://doi.org/10.1007/s10856-005-3582-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-005-3582-5

Keywords

Navigation