Skip to main content

Advertisement

Log in

Control of surface morphology of carbide coating on Co-Cr-Mo implant alloy

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Wear of materials used in artificial joints is a common failure mode of artificial joints. A low wear rate for implants is believed to be critical for extending implant service time. We developed a carbide-coated Co-Cr-Mo implant alloy created in plasma of methane and hydrogen mixed gas by a microwave plasma-assisted surface reaction. The carbide-coated Co-Cr-Mo has a unique “brain coral-like” surface morphology and is much harder than uncoated Co-Cr-Mo. The effect of plasma processing time and temperature on the surface morphology of the top carbide layer was studied toward optimizing the surface coating. The ratios of average roughness, Ra, core roughness, Rk, and summation of core roughness, reduced peak height (Rpk) and reduced valley depth (Rvk), Rk+ Rpk+ Rvk, for the 6-h/985 C coating to those for the 0.5-h/985 C coating were 1.9, 1.7, and 1.9, respectively. The ratios of Ra, Rk, and Rk+ Rpk+ Rvk for the 4-h/1000 C coating to those for the 4-h/939 C coating were 2.3, 2.3, and 2.0, respectively. With the proper combination of plasma processing time and temperature, it may be possible to change the thickness of the peak-valley top cluster by fourfold from ∼ 0.6 μ m to ∼ 2.5 μ m. Finally, the growth mechanism of the carbide layers on Co-Cr-Mo was discussed in the context of atomic composition analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BATTELLE MEMORIAL INSTITUTE, “Cobalt Monograph” edited by Centre d’Information du Cobalt (M. Weissenbruch LTD., Belgium, 1960) pp. 416 and 509.

  2. C. T. SIMS, in “The Superalloys” edited by C. T. Sims and W. C. Hagel (John Wiley & Sons, New York, 1972) p. 145.

    Google Scholar 

  3. J. A. DISEGI, R. L. KENNEDY and R. PILLIAR, in “Cobalt-Base Alloys for Biomedical Appliations,” edited by J. A. Disegi, R. L. Kennedy and R. Pilliar (American Society for Testing and Materials, West Conshohocken, PA, 1999).

    Google Scholar 

  4. H.-G. WILLERT, H. BERTRAM and G. H. BUCHHORN, Clin. Orthop. Relat. Res. 258 (1990) 95.

    Google Scholar 

  5. H. C. AMSTUTZ, P. CAMPBELL, N. KOSSOVSKY and I. C. CLARKE, ibid. 276 (1992) 7.

    PubMed  Google Scholar 

  6. D. DOWSON, Wear 190 (1995) 171.

    Article  CAS  Google Scholar 

  7. J. E. NEVELOS, E. INGHAM, C. DOYLE, A. B. NEVELOS and J. FISHER, Biomaterials 22 (2001) 2191.

    Article  CAS  PubMed  Google Scholar 

  8. K. TANAKA, J. TAMURA, K. KAWANABE, M. NAWA, M. OKA, M. UCHIDA, T. KOKUBO and T. NAKAMURA, J. Biomed. Mater. Res. 63 (2002) 262.

    Article  CAS  PubMed  Google Scholar 

  9. P. FIRKINS, J. L. HAILEY and J. FISHER, J. Mat. Sci.: Mater. in Med. 9 (1998) 597.

    Article  CAS  Google Scholar 

  10. H. A. MCKELLOP and T. V. RÖSTLUND, J. Biomed. Mater. Res. 24 (1990) 1413.

    Article  CAS  PubMed  Google Scholar 

  11. N. S. VANDAMME, L. QUE and L. D. T. TOPOLESKI, J. Mat. Sci. 34 (1999) 3525.

    Article  CAS  Google Scholar 

  12. J. M. HARRISON and J. F. NORTON, in “Behaviour of High Temperature Alloys in Aggressive Environments,” edited by J. Kirman, J. B. Mariott, M. Merz, P. R. Sahm and D. P. Whittle (The Metals Society, London, 1980) p. 661.

    Google Scholar 

  13. H. M. TAWANCY and N. M. ABBAS, J. Mat. Sci. 27 (1992) 1061.

    Article  CAS  Google Scholar 

  14. N. S. VANDAMME, B. H. WAYMAN and L. D. T. TOPOLESKI, J. Mat. Sci.: Mater. in Med. 14 (2003) 47.

    Article  CAS  Google Scholar 

  15. ASM Committee on Gas Carburizing, “Gas Carburizing” (American Society for Metals, OH, 1964) p. 50.

    Google Scholar 

  16. T. A. RAMANARAYANAN and D. J. SROLOVITZ, J. Electrochem. Soc 132 (1985) 2268.

    CAS  Google Scholar 

  17. A. M. STAINES and T. BELL, Thin Solid Films 86 (1981) 201.

    Article  CAS  Google Scholar 

  18. I. ASANO, T. ARAKI and Y. IKAWA, Mater. Sci. Eng. A140 (1991) 461.

    CAS  Google Scholar 

  19. L. E. TOTH, “Transition Metal Carbide and Nitrides” (Academic Press, New York, 1971) p. 82.

    Google Scholar 

  20. T. EL-RAGHY and M. W. BARSOUM, J. Appl. Phys. 83 (1998) 112.

    Article  CAS  Google Scholar 

  21. C. R. ANDERSON, private communication.

  22. J. I. GOLDSTEIN, A. D. ROMIG, JR., D. E. NEWBURY, C. E. LYMAN, P. ECHLIN, C. FIORI, D. C. JOY and E. LIFSHIN, “Scanning Electron Microscopy and X-Ray Microanalysis” 2nd ed. (Plenum Press, New York, 1992) p. 526.

    Google Scholar 

  23. W. KÖSTER and F. SPERNER, Arch. Eisenhüttenwesen 26 (1955) 555.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. D. T. Topoleski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandamme, N.S., Topoleski, L.D.T. Control of surface morphology of carbide coating on Co-Cr-Mo implant alloy. J Mater Sci: Mater Med 16, 647–654 (2005). https://doi.org/10.1007/s10856-005-2536-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-005-2536-2

Keywords

Navigation