Skip to main content
Log in

Lithium magnesium borosilicate glass: the impact of alternate doping with nano copper oxide and nano hematite on its structural, optical, and nuclear radiation shielding characteristics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study established a new glass system for nuclear radiation shielding based on lithium magnesium borosilicate glass doped with different weights percent of Nano copper oxide and Nano hematite alternatively. The new glass system has the following composition; 60%BO3 + 15%SiO2 + 10%Li2O + 5%MgO + (10-X)Fe2O3 + XCuO where X = 0, 2.5, 5, 7.5 and 10 wt.%, which were coded as BSLMFCuX. The prepared BSLMFCuX glasses have been characterized using Fourier-transform infrared spectroscopy, Raman, X-ray diffraction, and UV–vis diffuse reflectance spectroscopy. The radiation shielding performance was proven experimentally (using an HPGe detector) in the γ-photon energies emitted from the radionuclides 133Ba, 137Cs, and 60Co. The theoretical assessment was done (using Monte-Carlo code-5 and Phy-X/PSD software) in γ-photon energy range of 0.015: 15 MeV. Also, the neutron shielding performance was assessed through the fast neutron cross-section investigation. In addition, the carbon ion and alpha particles mass stopping power was calculated. The BSLMFoCu10 glass sample therefore presents the best gamma and fast neutron shielding capability among the prepared BSLMFCuX glasses due to the high content of copper oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data generated or analyzed during this study is included in this published article.

References

  1. G. Halkos, A. Zisiadou, Energy crisis risk mitigation through nuclear power and RES as alternative solutions towards self-sufficiency. J. Risk Financ. Manag. 16(1), 45 (2023)

    Article  Google Scholar 

  2. I.M. Nabil, M.G. El-Samrah, A.F.E. Sayed, A. Shazly, A. Omar, Sci. Rep. (2024). https://doi.org/10.1038/s41598-024-55633-1

    Article  PubMed  PubMed Central  Google Scholar 

  3. T.S. Adebayo, I. Ozturk, M. Ağa, S.E. Uhunamure, D. Kirikkaleli, K. Shale, Role of natural gas and nuclear energy consumption in fostering environmental sustainability in India. Sci. Rep. 13(1), 11030 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. I.M. Nabil, Y.Y. Ebaid, S.A. El-Mongy, Natural radionuclides quantification and radiation hazard evaluation of phosphate fertilizers industry: a case study. Phys. Part. Nucl. Lett. 19(3), 272–281 (2022)

    Article  Google Scholar 

  5. M. Alwaeli, V. Mannheim, Investigation into the current state of nuclear energy and nuclear waste management—A state-of-the-art review. Energies 15(12), 4275 (2022)

    Article  Google Scholar 

  6. P. Gokul, J.A. Kumar, R. Preetha, S. Chattopadhyaya, K. Mini, Additives in concrete to enhance neutron attenuation characteristics–A critical review. Results in Eng. 19, 101281 (2023)

    Article  CAS  Google Scholar 

  7. H. Jing, L. Geng, S. Qiu, H. Zou, M. Liang, D. Deng, Research progress of rare earth composite shielding materials. J. Rare Earths 41(1), 32–41 (2023)

    Article  CAS  Google Scholar 

  8. B. Kanagaraj, N. Anand, A.D. Andrushia, M. Naser, Recent developments of radiation shielding concrete in nuclear and radioactive waste storage facilities–A state of the art review. Constr. Build. Mater. 404, 133260 (2023)

    Article  Google Scholar 

  9. P. Kaur, J. Singh, P. Kaur, T. Singh, Radiation shielding and sensing properties for some Eu3+ doped bismo-phosphate glasses. Radiat. Phys. Chem. 206, 110769 (2023)

    Article  CAS  Google Scholar 

  10. E.A. Hussein, A. Madbouly, Chemical and radiation shielding effectiveness of some heavy metal oxide glasses for immobilizing radioactive wastes. J. Aust. Ceramic Soc. 60, 127–142 (2024)

    Article  CAS  Google Scholar 

  11. J. Marcial, B.J. Riley, A.A. Kruger, C.E. Lonergan, J.D. Vienna, Hanford low-activity waste vitrification: a Review. J. Hazardous Mater. 461, 132437 (2023)

    Article  Google Scholar 

  12. A. Ardiansyah et al., Physical, mechanical, optical, and gamma radiation shielding properties of the BaO-based glass system prepared by the melt-quench technique: a review. Radiation Phys. Chem. 210, 111059 (2023)

    Article  CAS  Google Scholar 

  13. N. Karpuz, Radiation shielding properties of glass composition. J. Radiation Res. Appl. Sci. 16(4), 100689 (2023)

    CAS  Google Scholar 

  14. Z. Alrowaili et al., Silicate glass system and significant role of Bi2O3 on radiation protection ability against gamma, neutron, and charged particle. Radiat. Phys. Chem. 203, 110609 (2023)

    Article  CAS  Google Scholar 

  15. A. Arvaneh, A. Asadi, S.A. Hosseini, Sensitivity analysis of gamma-ray shielding characteristics to the TiO2 concentration in the Bi2O3–ZnO–Pb3O4–Al2O3 glass sample based on the Monte Carlo method. Prog. Nucl. Energy 156, 104539 (2023)

    Article  CAS  Google Scholar 

  16. M. Al-Buriahi, Radiation shielding performance of a borate-based glass system doped with bismuth oxide. Radiat. Phys. Chem. 207, 110875 (2023)

    Article  CAS  Google Scholar 

  17. E. Abou Hussein, M.A. Barakat, Structural, physical and ultrasonic studies on bismuth borate glasses modified with Fe2O3 as promising radiation shielding materials. Mater. Chem. Phys. 290, 126606 (2022)

    Article  CAS  Google Scholar 

  18. T. Ahamad, Z.A. Alothman, M. Naushad, K. Yusuf, Synthesis and characterization of CuO doped lithium magnesium borate glasses for thermoluminescence dosimetry. Optik 231, 166369 (2021)

    Article  CAS  Google Scholar 

  19. N.A. Muhammad, B. Armynah, D. Tahir, High transparent wood composite for effective X-ray shielding applications. Mater. Res. Bull. 154, 111930 (2022)

    Article  CAS  Google Scholar 

  20. N.A.M. Alsaif et al., Fabrication, physical properties and γ-ray shielding factors of high dense B2O3–PbO–Na2O–CdO–ZnO glasses: impact of B2O3/PbO substitution. J. Mater. Sci.: Mater. Electron. (2024). https://doi.org/10.1007/s10854-024-12290-4

    Article  Google Scholar 

  21. B. Alshahrani et al., Amorphous alloys with high Fe content for radiation shielding applications. Radiat. Phys. Chem. 183, 109386 (2021)

    Article  CAS  Google Scholar 

  22. H.M.H. Zakaly, I.M. Nabil, S.A.M. Issa, N. Almousa, Z.Y. Khattari, Y.S. Rammah, Probing the elasticity and radiation protection potential of neodymium(III) doped zinc and niobium tellurite glasses: an integrated simulated and applied physics perspective. Mater. Today Commun. (2023). https://doi.org/10.1016/j.mtcomm.2023.107113

    Article  Google Scholar 

  23. Y.S. Rammah, A.T. Shah, O. Görke, N. Kudrevatykh, A. Abouhaswa, Synthesis, physical, optical and gamma radiation shielding capacities of novel mercuric-sodium-lead-borate glasses. Mater. Res. Bull. 160, 112136 (2023)

    Article  CAS  Google Scholar 

  24. R. BoodaghiMalidarre, I. Akkurt, I. Ekmekci, H.M. Zakaly, H. Mohammed, The role of La2O3 rare earth (RE) material in the enhancement of the radiation shielding, physical, mechanical and acoustic properties of the tellurite glasses. Radiat. Effects and Defects in Solids 178, 195–207 (2023)

    Article  CAS  Google Scholar 

  25. N. Sabry et al., Gamma-ray attenuation properties and fast neutron removal cross-section of Cu2CdSn3S8 and binary sulfide compounds (Cu/Cd/Sn S) using phy-X/PSD software. Radiat. Phys. Chem. 193, 109989 (2022)

    Article  CAS  Google Scholar 

  26. A. Khalil et al., A binary composite material of nano polyaniline intercalated with Nano-Fe2O3 for enhancing gamma-radiation-shielding properties: experimental and simulation study. Prog. Nucl. Energy 169, 105067 (2024)

    Article  CAS  Google Scholar 

  27. M. El-Samrah, M.A. Zamora, D. Novog, S. Chidiac, Radiation shielding properties of modified concrete mixes and their suitability in dry storage cask. Prog. Nucl. Energy 148, 104195 (2022)

    Article  CAS  Google Scholar 

  28. M.G. El-Samrah, M.A. Abdel-Rahman, A.M. Kany, Study characteristics of new concrete mixes and their mechanical, physical, and gamma radiation attenuation features. Z. Anorg. Allg. Chem. 644(2), 92–99 (2018)

    Article  CAS  Google Scholar 

  29. H.M. Gomaa, H. Saudi, I. Yahia, H. Zahran, B. Makram, Effects of Ce2O3 on multi-component borovanadate glass structural, optical, and attenuation characteristics. Radiat. Phys. Chem. 207, 110847 (2023)

    Article  CAS  Google Scholar 

  30. N. Alfryyan, Z.A. Alrowaili, S. Alomairy, I.M. Nabil, M.S. Al-Buriahi, Radiation attenuation properties of zinc-borosilicate glasses containing Al2O3 and Gd2O3. Silicon (2023). https://doi.org/10.1007/s12633-023-02636-8

    Article  Google Scholar 

  31. M. Al-Buriahi et al., Structure, optical, gamma-ray and neutron shielding properties of NiO doped B2O3–BaCO3–Li2O3 glass systems. Ceram. Int. 46(2), 1711–1721 (2020)

    Article  CAS  Google Scholar 

  32. R.B. Malidarre, I. Akkurt, K. Gunoglu, H. Akyildirim, Fast neutrons shielding properties for HAP-Fe2O3 composite materials. Int. J. Computational and Exp. Sci. Eng. 7, 143–145 (2021)

    Article  Google Scholar 

  33. S. Vedavyas et al., Characterization and analysis of physical, optical, and radiation attenuation properties of vanadium-infused in cadmium lead borate tellurite glasses. Optical Mater. (2024). https://doi.org/10.1016/j.optmat.2024.115157

    Article  Google Scholar 

  34. A. Didi, A. Dadouch, M. Bencheikh, O. Jai, Monte Carlo simulation of thermal neutron flux of americium–beryllium source used in neutron activation analysis. Mosc. Univ. Phys. Bull. 72, 460–464 (2017)

    Article  Google Scholar 

  35. M. El-Samrah, A. El-Mohandes, A. El-Khayatt, S. Chidiac, MRCsC: a user-friendly software for predicting shielding effectiveness against fast neutrons. Radiat. Phys. Chem. 182, 109356 (2021)

    Article  CAS  Google Scholar 

  36. R. BoodaghiMalidarre, I. Akkurt, The influence of Nd2O3 on the radiation shielding, physical, mechanical, and acoustic properties of the (75–x) TeO2–15 MgO–10 Na2O–x Nd2O3 glasses as a potent radiation shielding material. Polymer Composites 43, 5418–5425 (2022)

    Article  CAS  Google Scholar 

  37. A. Didi, A. Dadouch, O. Jai, Modelisation and distribution of neutron flux in radium–beryllium source (226 Ra–Be). Mosc. Univ. Phys. Bull. 72, 465–469 (2017)

    Article  Google Scholar 

  38. A. Elsayed, M. Hussein, S. El-Mongy, H. Ibrahim, A. Shazly, Different approaches to purify the 185.7 keV of 235 U from contribution of another overlapping γ-transition. Phys. Part. Nucl. Lett. 18, 202–209 (2021)

    Article  CAS  Google Scholar 

  39. I.M. Nabil, K.M. El-Kourghly, A.F. El Sayed, A semi–empirical method for efficiency calibration of an HPGe detector against different sample densities. Appl. Radiat. Isotopes (2023). https://doi.org/10.1016/j.apradiso.2023.110946

    Article  Google Scholar 

  40. A.K. Chakraborty, M.S. Uddin, M.A. Shariff, S.A. Latif, M.A. Rashid, M.U. Khandaker, Efficiency calibration of γ-ray detector for extended sources. Pramana 92(4), 67 (2019)

    Article  Google Scholar 

  41. R. Kurtulus, T. Kavas, I. Akkurt, K. Gunoglu, H. Tekin, C. Kurtulus, A comprehensive study on novel alumino-borosilicate glass reinforced with Bi2O3 for radiation shielding applications: synthesis, spectrometer, XCOM, and MCNP-X works. J. Mater. Sci.: Mater. Electron. 32(10), 13882–13896 (2021)

    CAS  Google Scholar 

  42. M. C. Team, "MCNP–a General Monte Carlo N-Particle Transport Code (X-5 Monte Carlo Team, Version 5). Vol. I: Overview and Theory. Los Alamos, NM: Los Alamos National Laboratory," LA-UR-03–1987, 2003.

  43. W. Zhou, T. Cui, Z. Zhang, Y. Yang, H. Yi, D. Hou, Measurement of wide energy range neutrons with a CLYC (Ce) scintillator. J. Instrum. 18(02), P02014 (2023)

    Article  Google Scholar 

  44. R. Kurtulus, T. Kavas, K. Mahmoud, I. Akkurt, K. Gunoglu, M. Sayyed, Evaluation of gamma-rays attenuation competences for waste soda-lime glass containing MoO3: experimental study, XCOM computations, and MCNP-5 results. J. Non-Cryst. Solids 557, 120572 (2021)

    Article  CAS  Google Scholar 

  45. G. Hiremath, M. Hosamani, V. Singh, N. Ayachit, N. Badiger, Theoretical investigation of the gamma and neutron interaction parameters of some inorganic scintillators using Phy-X/PSD and NGCal software. J. Nuclear Eng. Radiat. Sci. 9(3), 032004 (2023)

    Article  CAS  Google Scholar 

  46. I. Akkurt, R.B. Malidarre, Physical, structural, and mechanical properties of the concrete by FLUKA code and phy-X/PSD software. Radiat. Phys. Chem. 193, 109958 (2022)

    Article  CAS  Google Scholar 

  47. K. Gunoglu, H.V. Özkavak, İ Akkurt, Evaluation of gamma ray attenuation properties of boron carbide (B4C) doped AISI 316 stainless steel: experimental, XCOM and Phy-X/PSD database software. Mater. Today Commun. 29, 102793 (2021)

    Article  CAS  Google Scholar 

  48. R. Kurtuluş, T. Kavas, The role of B2O3 in lithium-zinc-calcium-silicate glass for improving the radiation shielding competencies: a theoretical evaluation via Phy-X/PSD. J. Boron 6(1), 236–242 (2021)

    Google Scholar 

  49. M.M. Salem et al., Electrospun PVDF/Barium hexaferrite fiber composites for enhanced electromagnetic shielding in the X-band range. Results in Phys. (2023). https://doi.org/10.1016/j.rinp.2023.106975

    Article  Google Scholar 

  50. M. Moustafa, H. Morshidy, A.R. Mohamed, M. El-Okr, A comprehensive identification of optical transitions of cobalt ions in lithium borosilicate glasses. J. Non-Cryst. Solids 517, 9–16 (2019)

    Article  CAS  Google Scholar 

  51. A. Kaur et al., Effect of MnO on structural, optical and thermoluminescence properties of lithium borosilicate glasses. J. Lumin. 219, 116872 (2020)

    Article  CAS  Google Scholar 

  52. R. Kurtulus, C. Kurtulus, T. Kavas, Nuclear radiation shielding characteristics and physical, optical, mechanical, and thermal properties of lithium-borotellurite glass doped with Rb2O. Prog. Nucl. Energy 141, 103961 (2021)

    Article  CAS  Google Scholar 

  53. I.M. Nabil, M.G. El-Samrah, A. Omar, A.F. Tawfic, A.F. El Sayed, Experimental, analytical, and simulation studies of modified concrete mix for radiation shielding in a mixed radiation field. Sci. Rep. (2023). https://doi.org/10.1038/s41598-023-44978-8

    Article  PubMed  PubMed Central  Google Scholar 

  54. H. Zahran et al., Radiation attenuation properties of the quaternary semiconducting compounds Cu2CoGe [S, Se, Te] 4. Results in Phys. 37, 105488 (2022)

    Article  Google Scholar 

  55. R.B. Malidarre, I. Akkurt, Enhancement of the radiation shielding, physical and mechanical qualities of the Nd-glass series. Radiat. Phys. Chem. 212, 111174 (2023)

    Article  Google Scholar 

  56. I.M. Nabil, M.G. El-Samrah, M.Y. Zorainy, H.Y. Zahran, A.T. Mosleh, I.S. Yahia, Influence of aluminum and vanadium oxides on copper borate glass: a physical/radiological study. Nuclear Eng. Technol. (2024). https://doi.org/10.1016/j.net.2024.03.034

    Article  Google Scholar 

  57. Y.Y. Celen, M. Sarihan, G. Almisned, H.O. Tekin, I. Ekmekçi, Calculation of gamma-ray buildup factors for some medical materials. Emerging Mater. Res. 11(3), 388–398 (2022)

    Article  Google Scholar 

  58. M. Al-Buriahi, E.M. Bakhsh, B. Tonguc, S.B. Khan, Mechanical and radiation shielding properties of tellurite glasses doped with ZnO and NiO. Ceram. Int. 46(11), 19078–19083 (2020)

    Article  CAS  Google Scholar 

  59. I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24(17), 1389–1401 (1997)

    Article  CAS  Google Scholar 

  60. M.S. Al-Buriahi, B.T. Tonguc, Study on gamma-ray buildup factors of bismuth borate glasses. Appl. Phys. A 125(7), 482 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Groups Funding program grant code (NU/RG/MRC/12/6).

Author information

Authors and Affiliations

Authors

Contributions

Formal analysis and software: I.M.N., E.A.A., A.T.M.; Analysis review: I.M.N., E.A.A., M.S.A.K.; Supervision: I.S.Y; Writing-original draft: I.M.N., E.A.A.; Writing-review and editing: F.F.A., A.S.A., M.S.A. All Authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Islam M. Nabil.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabil, I.M., Mosleh, A.T., Allam, E.A. et al. Lithium magnesium borosilicate glass: the impact of alternate doping with nano copper oxide and nano hematite on its structural, optical, and nuclear radiation shielding characteristics. J Mater Sci: Mater Electron 35, 826 (2024). https://doi.org/10.1007/s10854-024-12554-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12554-z

Navigation