Skip to main content
Log in

Non-enzymatic glucose sensors based on electrodeposited CuxO–ZnO composite nanostructures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present study investigates the non-enzymatic glucose sensing properties of Cu\(_x\)O–ZnO (x = 1,2) composite nanostructures that have been fabricated using a simple and fast co-electrodeposition (CED) method. Two concentrations of Cu\(^{2+}\) were used and interestingly, for the lower concentration, the fabricated (C\(_2\)) nanostructures are of Cu\(_2\)O–ZnO type while for the higher concentration (C\(_{50}\)), nanostructures show a mixed Cu\(_x\)O–ZnO (x = 1,2) nature. Although both the samples exhibit a good catalytic response for non-enzymatic glucose sensing, the C\(_{50}\) sample shows a far superior response. Along with a high sensitivity of 384.6 µA mM\(^{-1}\) cm\(^{-2}\), a large linear range of 0.03–3 mM, and a low least detection limit (LOD) of 0.7  µM, C\(_{50}\) also demonstrates a good long-term stability, good reproducibility, and good selectivity toward glucose detection, even in the presence of interfering species. The synergistic effect of Cu\(_x\)O–ZnO composite nanostructures and their semiconducting nature may be contributing to the good response of C\(_{50}\) as a glucose sensor. The results presented here demonstrate that C\(_{50}\) can be an excellent non-enzymetic glucose sensor for measuring glucose in blood and food samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study will be made available on request.

References

  1. Shan Wang, Shaoping Li, Wenwen Wang, Mengting Zhao, Jiaofeng Liu, Haifeng Feng, Yiming Chen, Gu. Qi, Du. Yi, Weichang Hao, A non-enzymatic photoelectrochemical glucose sensor based on BiVO\(_4\) electrode under visible light. Sens. Actuators B: Chem. 291, 34–41 (2019)

    Article  Google Scholar 

  2. M. Adeel, M.M. Rahman, I. Caligiuri, V. Canzonieri, F. Rizzolio, S. Daniele, Recent advances of electrochemical and optical enzyme-free glucose sensors operating at physiological conditions. Biosens. Bioelectron. 165, 112331 (2020)

    Article  CAS  PubMed  Google Scholar 

  3. Yagmur Koskun, Aysun Savk, Betül Sen, Fatih Sen, Highly sensitive glucose sensor based on monodisperse palladium nickel/activated carbon nanocomposites. Analytica Chimica Acta. 1010, 37–43 (2018)

    Article  CAS  PubMed  Google Scholar 

  4. M. Li, L. Fang, H. Zhou, F. Wu, Y. Lu, H. Luo, Y. Zhang, B. Hu, Three-dimensional porous MXene/NiCo-LDH composite for high performance non-enzymatic glucose sensor. Appl. Surf. Sci. 495, 143554 (2019)

    Article  CAS  Google Scholar 

  5. X.H. Niu, Y. Li, J. Tang, Y. Hu, H. Zhao, M. Lan, Electrochemical sensing interfaces with tunable porosity for non-enzymatic glucose detection: a Cu foam case. Biosens. Bioelectron. 51, 22–28 (2014)

    Article  CAS  PubMed  Google Scholar 

  6. Ming Wei, Yanxia Qiao, Haitao Zhao, Jie Liang, Tingshuai Li, Yonglan Luo, Lu. Siyu, Xifeng Shi, Lu. Wenbo, Xuping Sun, Electrochemical non-enzymatic glucose sensors: recent progress and perspectives. Chem. Commun. 56, 14553–14569 (2020)

    Article  CAS  Google Scholar 

  7. K. Tian, M. Prestgard, A. Tiwari, A review of recent advances in nonenzymatic glucose sensors. Mater. Sci. Eng. C 41, 100–118 (2014)

    Article  CAS  Google Scholar 

  8. P. Yang, X. Wang, C.Y. Ge, X. Fu, X.Y. Liu, H. Chai, X. Guo, H.C. Yao, Y.X. Zhang, K. Chen, Fabrication of CuO nanosheets-built microtubes via Kirkendall effect for non-enzymatic glucose sensor. Appl. Surf. Sci. 494, 484–491 (2019)

    Article  CAS  ADS  Google Scholar 

  9. Y. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes, G.A. Somorjai, A.P. Alivisatos, Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304, 711–714 (2004)

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Clemens Burda, Xiaobo Chen, Radha Narayanan, Mostafa A. El-Sayed, Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105(4), 1025–1102 (2005)

    Article  CAS  PubMed  Google Scholar 

  11. J. Theerthagiri, S. Salla, R.A. Senthil, P. Nithyadharseni, A. Madankumar, P. Arunachalam, T. Maiyalagan, H.S. Kim, A review on ZnO nanostructured materials: energy, environmental and biological applications. Nanotechnology 30, 392001 (2019)

    Article  CAS  PubMed  Google Scholar 

  12. A.K. Manna, P. Guha, V.J. Solanki, S.K. Srivastava, S. Varma, Non-enzymatic glucose sensing with hybrid nanostructured Cu\(_2\)O-ZnO prepared by single-step coelectrodeposition technique. J. Solid State Electrochem. 24, 1647–1658 (2020)

    Article  CAS  Google Scholar 

  13. J. Singh, S. Juneja, S. Palsaniya, A.K. Manna, R.K. Soni, J. Bhattacharya, Evidence of oxygen defects mediated enhanced photocatalytic and antibacterial performance of ZnO nanorods. Colloids Surf. B: Biointerfaces. 184, 110541 (2019)

    Article  CAS  PubMed  Google Scholar 

  14. P. Dash, A. Manna, N.C. Mishra, Synthesis and characterization of aligned ZnO nanorods for visible light photocatalysis. Physica E: Low-Dimen. Syst. Nanostruct. 107, 38–46 (2019)

    Article  CAS  ADS  Google Scholar 

  15. A.K. Manna, P. Dash, D. Das, S.K. Srivastava, P.K. Sahoo, A. Kanjilal, D. Kanjilal, S. Varma, Resistive switching properties and photoabsorption behavior of Ti ion implanted ZnO thin films. Ceram. Int. 48, 3303–3310 (2022)

    Article  CAS  Google Scholar 

  16. S. SoYoon, A. Ramadoss, B. Saravanakumar, S.J. Kim, Novel Cu/CuO/ZnO hybrid hierarchical nanostructures for non-enzymatic glucose sensor application. J. Electroanal. Chem. 717–718, 90–95 (2014)

    Article  Google Scholar 

  17. L. Chow, O. Lupan, G. Chai, H. Khallaf, L.K. Ono, B.R. Cuenya, I.M. Tiginyanu, V.V. Ursaki, V. Sontea, A. Schulte, Synthesis and characterization of Cu-doped ZnO one-dimensional structures for miniaturized sensor applications with faster response. Sens. Actuators A 189, 399–408 (2013)

    Article  CAS  Google Scholar 

  18. Daixin Ye, Guohai Liang, Huixiang Li, Juan Luo, Song Zhang, Hui Chen, Jilie Kong, A novel nonenzymatic sensor based on CuO nanoneedle/graphene/carbon nanofiber modified electrode for probing glucose in saliva. Talanta 116, 223–230 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. J. Singh, A.K. Manna, R.K. Soni, Sunlight driven photocatalysis and non-enzymatic glucose sensing performance of cubic structured CuO thin films Authors. Appl. Surf. Sci. 530, 147258 (2020)

    Article  CAS  Google Scholar 

  20. B. Yuan, C. Xu, L. Liu, Q. Zhang, S. Ji, L. Pi, D. Zhang, Q. Huo, Cu\(_2\)O/NiO x /graphene oxide modified glassy carbon electrode for the enhanced electrochemical oxidation of reduced glutathione and nonenzyme glucose sensor. Electrochim. Acta 104, 78–83 (2013)

    Article  CAS  Google Scholar 

  21. Chenhuinan Wei, Zhuo Wang, Yimo Xiao, Du. Fan, Yu. Ziyang, Huihu Wang, Qiming Liu, In-situ construction of Au/Cu\(_2\)O nanowire arrays for sensitive glucose sensing. Talanta 254, 124194 (2023)

    Article  CAS  PubMed  Google Scholar 

  22. H. Huo, C. Guo, G. Li, X. Han, C. Xu, Reticular-vein-like Cu@Cu 2 O/reduced graphene oxide nanocomposites for a non-enzymatic glucose sensor. RSC Adv. 4, 20459 (2014)

    Article  CAS  ADS  Google Scholar 

  23. Li. Wang, Fu. Jinying, Haoqing Hou, Yonghai Song, A facile strategy to prepare Cu\(_2\)O/Cu electrode as a sensitive enzyme-free glucose sensor. Int. J. Electrochem. Sci. 7, 12587–12600 (2012)

    Article  CAS  Google Scholar 

  24. Tetsuro Soejima, Kohei Takadaa, Seishiro Ito, Alkaline vapor oxidation synthesis and electrocatalytic activity toward glucose oxidation of CuO/ZnO composite nanoarrays. Appl. Surf. Sci. 277, 192–200 (2013)

    Article  CAS  ADS  Google Scholar 

  25. Yu. Bin Cai, Minggang Zhao Zhou, Hui Cai, Zhizhen Ye, Lei Wang, Jingyun Huang, Synthesis of ZnO–CuO porous core-shell spheres and their application for non-enzymatic glucose sensor. Appl. Phys. A. 118, 989 (2015)

    Article  ADS  Google Scholar 

  26. S.N. Sarangi, Controllable growth of ZnO nanorods via electrodeposition technique: towards UV photo-detection. J. Phys. D: Appl. Phys. 49, 355103 (2016)

    Article  Google Scholar 

  27. Yasemin Caglar, Andaç Arslan, Saliha Ilican, Evrim Hür, Seval Aksoy, Mujdat Caglar, Preparation and characterization of electrodeposited ZnO and ZnO: Co nanorod films for heterojunction diode applications. J. Alloys and Compd. 574, 104–111 (2013)

    Article  CAS  Google Scholar 

  28. O. Lupan, T. Pauporté, B. Viana, P. Aschehoug, Electrodeposition of Cu-doped ZnO nanowire arrays and heterojunction formation with p-GaN for color tunable light emitting diode applications. Electrochim. Acta 56, 10543–10549 (2011)

    Article  CAS  Google Scholar 

  29. Y. Liu, F. Ren, S. Shen, Y. Fu, C. Chen, C. Liu, Z. Xing, D. Liu, X. Xiao, W. Wu, X. Zheng, Y. Liu, C. Jiang, Efficient enhancement of hydrogen production by Ag/Cu2O/ZnO tandem triple-junction photoelectrochemical cell. Appl. Phys. Lett. 106, 123901 (2015)

    Article  ADS  Google Scholar 

  30. M. Rashad, M. Rüsing, G. Berth, K. Lischka, A. Pawlis, CuO and Co\(_3\)O\(_4\) nanoparticles: synthesis, characterizations, and Raman spectroscopy. J. Nanomater. 2013, 714853 (2013)

    Article  Google Scholar 

  31. P. Soundarrajan, K. Sankarasubramanian, M. Sampath, T. Logu, K. Sethuraman, K. Ramamurthi, Cu ions induced reorientation of crystallite in ZnO nano/micro rod arrays thin films. Physica E Low Dimens. Syst. Nanostruct. 71, 56–63 (2015)

    Article  CAS  ADS  Google Scholar 

  32. Prashant K. Sharma, Ranu K. Dutta, Avinash C. Pandey, Doping dependent room-temperature ferromagnetism and structural properties of dilute magnetic semiconductor ZnO: Cu \(^{2+}\) nanorods. J. Magn. Magn. Mater. 321, 4001–4005 (2009)

    Article  CAS  ADS  Google Scholar 

  33. J. Ghijsen, L.H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G.A. Sawatzky, M.T. Czyzyk, Electronic structure of Cu\(_2\)O and CuO. Phys. Rev. B. 38, 11322 (1988)

    Article  CAS  ADS  Google Scholar 

  34. T. Robert, M. Bartel, G. Offergeld, Characterization of oxygen species adsorbed on copper and nickel oxides by X-ray photoelectron spectroscopy. Surf. Sci. 33, 123–130 (1972)

    Article  CAS  ADS  Google Scholar 

  35. A.A. Dubale, C.J. Pan, A.G. Tamirat, H.M. Chen, W.N. Su, C.H. Chen, J. Rick, D.W. Ayele, B.A. Aragaw, J.F. Lee, Y.W. Yang, Heterostructured Cu2O/CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical water reduction. J. Mater. Chem. A 3, 12482–12499 (2015)

    Article  CAS  Google Scholar 

  36. M.T. Qamar, M. Aslam, I.M. Ismail, N. Salah, A. Hameed, Synthesis, characterization, and sunlight mediated photocatalytic activity of CuO Coated ZnO for the removal of nitrophenols. ACS Appl. Mater. Interfaces 7(16), 8757–8769 (2015)

    Article  CAS  PubMed  Google Scholar 

  37. Daqiang Gao, Jing Zhang, Jingyi Zhu, Jing Qi, Zhaohui Zhang, Wenbo Sui, Huigang Shi, Desheng Xue, Vacancy-mediated magnetism in pure copper oxide nanoparticles. Nanoscale Res. Lett. 5, 769–772 (2010)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  38. U. Shaislamov, K. Krishnamoorthy, S.J. Kim, W. Chun, H.J. Lee, Facile fabrication and photoelectrochemical properties of a CuO nanorod photocathode with a ZnO nanobranch protective layer. RSC Adv. 6, 103049–103056 (2016)

    Article  CAS  ADS  Google Scholar 

  39. C. Zhou, L. Xu, J. Song, R. Xing, S. Xu, D. Liu, H. Song, Ultrasensitive non-enzymatic glucose sensor based on three-dimensional network of ZnO–CuO hierarchical nanocomposites by electrospinning. Sci. Rep. 4, 7382 (2014)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  40. H.X. Wu, W.M. Cao, Y. Li, G. Liu, Y. Wen, H.F. Yang, S.P. Yang, In situ growth of copper nanoparticles on multiwalled carbon nanotubes and their application as non-enzymatic glucose sensor materials. Electrochim. Acta. 55, 3734–3740 (2010)

    Article  CAS  Google Scholar 

  41. R. Khan, R. Ahmad, P. Rai, L.W. Jang, J.H. Yun, Y.T. Yu, Y.B. Hahn, I.H. Lee, Glucose-assisted synthesis of Cu\(_2\)O shuriken-like nanostructures and their application as nonenzymatic glucose biosensors. Sens. Actuators B 203, 471–476 (2014)

    Article  CAS  Google Scholar 

  42. Song Li, Yajie Zheng, Gaowu W. Qin, Yuping Ren, Wenli Pei, Liang Zuo, Enzyme-free amperometric sensing of hydrogen peroxide and glucose at a hierarchical Cu\(_2\)O modified electrode. Talanta 85, 1260–1264 (2011)

    Article  CAS  PubMed  Google Scholar 

  43. E. Reitz, W. Jia, M. Gentile, Y. Wang, Y. Lei, Nanospheres based nonenzymatic glucose. Sens. Electroanal. 20, 2482–2486 (2008)

    Article  CAS  Google Scholar 

  44. Feihong Meng, Wei Shi, Yanan Sun, Xuan Zhu, Wu. Guisen, Changqing Ruan, Xin Liu, Dongtao Ge, Nonenzymatic biosensor based on CuxO nanoparticles deposited on polypyrrole nanowires for improving detection range. Biosens. Bioelectron. 42, 141–147 (2013)

    Article  CAS  PubMed  Google Scholar 

  45. J. Song, L. Xu, C. Zhou, R. Xing, Q. Dai, D. Liu, H. Song, Synthesis of graphene oxide based CuO nanoparticles composite electrode for highly enhanced nonenzymatic glucose detection. ACS Appl. Mater. Interfaces 5, 12928–12934 (2013)

    Article  CAS  PubMed  Google Scholar 

  46. Yue Zhao, Xiangjie Bo, Liping Guo, Highly exposed copper oxide supported on three-dimensional porous reduced graphene oxide for non-enzymatic detection of glucose. Electrochimica Acta 176, 1272–1279 (2015)

    Article  CAS  Google Scholar 

  47. Ru. Minmin Liu, Wei Chen Liu, Graphene wrapped Cu\(_2\)O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens. Bioelec-Tron. 45, 206–212 (2013)

    Article  Google Scholar 

  48. Y. Zhong, T. Shi, Z. Liu, S. Cheng, Y. Huang, X. Tao, G. Liao, Z. Tang, Ultrasensitive non-enzymatic glucose sensors based on different copper oxide nanostruc- tures by in-situ growth. Sens. Actuators B 236, 326–333 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Help of S.K. Choudhury with Raman setup is acknowledged.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

AKM: investigation, writing, review, and editing, PG: investigations, SKS:review and editing, SV: investigation, supervision, writing, review, and editing

Corresponding author

Correspondence to Shikha Varma.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest.

Ethical approval

The submitted work is original and not have been published elsewhere in any form or language.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manna, A.K., Guha, P., Srivastava, S.K. et al. Non-enzymatic glucose sensors based on electrodeposited CuxO–ZnO composite nanostructures. J Mater Sci: Mater Electron 35, 188 (2024). https://doi.org/10.1007/s10854-023-11877-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11877-7

Navigation