Skip to main content
Log in

Structural, optical, and electrical enhancement of polyethylene oxide (PEO) and sodium alginate (NaAlg) through embedding silver nanoparticles (Ag NP) for optoelectrical applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Researchers have recently become interested in polymer-based energy storage. Using the sol–gel method, we prepared silver nanoparticles (Ag NP) as nanofillers with filling levels of up to 6 wt%. Subsequently, a nanocomposite film was synthesized by incorporating these Ag NP into a host polymeric blend matrix of Polyethylene oxide (PEO) and Sodium alginate (NaAlg) using solution casting. The PEO:NaAlg weight ratio was 50:50. The X-ray diffraction analysis of nanocomposite films containing silver nanoparticles revealed that the films’ crystallinity decreased as the content of silver nanoparticles increased. The optical absorption spectra showed a noteworthy decrease in the optical bandgap for the permitted direct transition upon the incorporation of Ag NP. Specifically, the energy gap reduced from 4.78 eV in the pure PEO/NaAlg matrix to 4.36 eV in the nanocomposite film with a 6 wt% content of Ag NP as nanofillers. Upon incorporating the Ag NP, the nanocomposite films exhibited significant improvements in various electrical and dielectric properties. Both AC electrical conductivity (σac) and DC electrical conductivity (σdc) values increased notably, with σdc rising from 4.65 × 10–11 S cm−1 in the pure PEO/NaAlg blend to 7.52 × 10–9 S cm−1 in nanocomposites containing 6 wt% Ag NP. Additionally, the dielectric constant (ε′) and dielectric loss (ε″) values also showed enhancement after the addition of Ag NP. The study shows that PEO/NaAlg–Ag nanocomposite films have potential for enhancing polymer-based capacitors used in energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

  1. B. Imre, B. Pukánszky, Compatibilization in bio-based and biodegradable polymer blends. Eur. Polymer J. 49(6), 1215–1233 (2013)

    Article  CAS  Google Scholar 

  2. J. Jian et al., An overview on synthesis, properties and applications of poly (butylene-adipate-co-terephthalate)–PBAT. Adv. Ind. Eng. Polym. Res. 3(1), 19–26 (2020)

    Google Scholar 

  3. M.N. Ramdhiny, J.W. Jeon, Design of multifunctional polymeric binders in silicon anodes for lithium-ion batteries. Carbon Energy (2023). https://doi.org/10.1002/cey2.356

    Article  Google Scholar 

  4. H. Ragab, The influence of graphene oxide on the optical, thermal, electrical, and dielectric properties of PVA/PEO composite. J. Mater. Sci. Mater. Electron. 33(25), 19793–19804 (2022)

    Article  CAS  Google Scholar 

  5. R. Davis et al., A comprehensive review on metallic implant biomaterials and their subtractive manufacturing. Int. J. Adv. Manuf. Technol. 120(3–4), 1473–1530 (2022)

    Article  Google Scholar 

  6. T. Caykara, S. Demirci, Ö. Kantoğlu, Thermal, spectroscopic, and mechanical properties of blend films of poly (n-vinyl-2-pyrrolidone) and sodium alginate. Polymer-Plast. Technol. Eng. 46(7), 737–741 (2007)

    Article  CAS  Google Scholar 

  7. I. Kurćubić et al., Integrated in vitro–in vivo–in silico studies in the pharmaceutical development of propranolol hydrochloride mucoadhesive buccal films. J. Drug Delivery Sci. Technol. 86, 104715 (2023)

    Article  Google Scholar 

  8. A. Rezaei, E. Katoueizadeh, S.M. Zebarjad, Investigating of the influence of zinc oxide nanoparticles morphology on the properties of electrospun polyvinyl alcohol/chitosan (PVA/CS) nanofibers. J. Drug Delivery Sci. Technol. 86, 104712 (2023)

    Article  CAS  Google Scholar 

  9. F. Hentati et al., Structural characterization and antioxidant activity of water-soluble polysaccharides from the Tunisian brown seaweed Cystoseira compressa. Carbohyd. Polym.. Polym. 198, 589–600 (2018)

    Article  CAS  Google Scholar 

  10. H. Ahmed et al., Biomedical applications of mesoporous silica nanoparticles as a drug delivery carrier. J. Drug Delivery Sci. Technol. 76, 103729 (2022)

    Article  Google Scholar 

  11. S. Manna et al., Chitosan derivatives as carriers for drug delivery and biomedical applications. ACS Biomater. Sci. Eng.Biomater. Sci. Eng. 9(5), 2181–2202 (2023)

    Article  CAS  Google Scholar 

  12. E.M. Nsengiyumva, P. Alexandridis, Xanthan gum in aqueous solutions: fundamentals and applications. Int. J. Biol. Macromol.Macromol. 216, 583 (2022)

    Article  CAS  Google Scholar 

  13. C. Mukherjee et al., Recent advances in biodegradable polymers-properties, applications and future prospects. Eur. Polym. J.Polym. J. 192, 112068 (2023)

    Article  CAS  Google Scholar 

  14. T. Aziz et al., Manufactures of bio-degradable and bio-based polymers for bio-materials in the pharmaceutical field. J. Appl. Polym. Sci.Polym. Sci. 139(29), e52624 (2022)

    Article  CAS  Google Scholar 

  15. F. Mollarasouli et al., Magnetic nanoparticles in developing electrochemical sensors for pharmaceutical and biomedical applications. Talanta 226, 122108 (2021)

    Article  CAS  Google Scholar 

  16. C. Chen, Y. Xi, Y. Weng, Recent advances in cellulose-based hydrogels for tissue engineering applications. Polymers 14(16), 3335 (2022)

    Article  CAS  Google Scholar 

  17. A.N. Al-hakimi et al., Inorganic nanofillers TiO2 nanoparticles reinforced host polymer polypyrrole for microelectronic devices and high-density energy storage systems. J. Mater. Sci. Mater. Electron. 34(3), 238 (2023)

    Article  CAS  Google Scholar 

  18. K.K. Kumar et al., Investigations on the effect of complexation of NaF salt with polymer blend (PEO/PVP) electrolytes on ionic conductivity and optical energy band gaps. Phys. B 406(9), 1706–1712 (2011)

    Article  Google Scholar 

  19. S. Singh, A. Bharti, V.K. Meena, Green synthesis of multi-shaped silver nanoparticles: optical, morphological and antibacterial properties. J. Mater. Sci. Mater. Electron. 26(6), 3638–3648 (2015)

    Article  CAS  Google Scholar 

  20. K. Shameli et al., Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder. Int. J. Nanomed.Nanomed. (2012). https://doi.org/10.2147/IJN.S36786

    Article  Google Scholar 

  21. A. Yassin, Dielectric spectroscopy characterization of relaxation in composite based on (PVA–PVP) blend for nickel–cadmium batteries. J. Mater. Sci. Mater. Electron. 31(21), 19447–19463 (2020)

    Article  Google Scholar 

  22. A. Abdelghany, M. Farea, A. Oraby, Structural, optical, and electrical reinforcement of gamma-irradiated PEO/SA/Au NPs nanocomposite. J. Mater. Sci. Mater. Electron. 32, 6538–6549 (2021)

    Article  CAS  Google Scholar 

  23. E.M. Abdelrazek et al., Structural, optical, morphological and thermal properties of PEO/PVP blend containing different concentrations of biosynthesized Au nanoparticles. J. Mater. Res. Technol. 7(4), 419–431 (2018)

    Article  CAS  Google Scholar 

  24. A. Abdelghany et al., Effect of gamma-irradiation on (PEO/PVP)/Au nanocomposite: materials for electrochemical and optical applications. Mater. Design 97, 532–543 (2016)

    Article  CAS  Google Scholar 

  25. M. Morsi et al., Effect of lithium titanate nanoparticles on the structural, optical, thermal and electrical properties of polyethylene oxide/carboxymethyl cellulose blend. J. Mater. Sci. Mater. Electron. 29, 15912–15925 (2018)

    Article  CAS  Google Scholar 

  26. M. El-Morsy et al., Structural, optical, and electrical conductivity of ZnO and TiO2 nanoparticles scattered in PEO-PVA for electrical applications. Res. Phys. 50, 106592 (2023)

    Google Scholar 

  27. I. Saini et al., Tailoring of electrical, optical and structural properties of PVA by addition of Ag nanoparticles. Mater. Chem. Phys. 139(2–3), 802–810 (2013)

    Article  CAS  Google Scholar 

  28. E. Davis, N. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22(179), 0903–0922 (1970)

    Article  CAS  Google Scholar 

  29. M. Farea et al., Effect of cesium bromide on the structural, optical, thermal and electrical properties of polyvinyl alcohol and polyethylene oxide. J. Mater. Res. Technol. 9(2), 1530–1538 (2020)

    Article  CAS  Google Scholar 

  30. H. Zidan, M. Abu-Elnader, Structural and optical properties of pure PMMA and metal chloride-doped PMMA films. Phys. B 355(1–4), 308–317 (2005)

    Article  CAS  Google Scholar 

  31. R.P. Chahal et al., γ-Irradiated PVA/Ag nanocomposite films: materials for optical applications. J. Alloys Compd. 538, 212–219 (2012)

    Article  CAS  Google Scholar 

  32. A. Saeed et al., Electrical and dielectric properties of meridional and facial Alq3 nanorods powders. J. Mater. Sci. Mater. Electron. 32, 2075–2087 (2021)

    Article  CAS  Google Scholar 

  33. C. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83(1), 121 (1951)

    Article  CAS  Google Scholar 

  34. H. Ragab, Influence of α-hematite nanorods (αFe2O3 NRs) on the optical, magnetic, and electrical properties of PEO/NaAlg blend for magneto-optical applications. J. Inorg. Organomet. Polym. Mater.Inorg. Organomet. Polym. Mater. 33(2), 484–494 (2023)

    Article  CAS  Google Scholar 

  35. P. Dhatarwal, R. Sengwa, S. Choudhary, Effectively improved ionic conductivity of montmorillonite clay nanoplatelets incorporated nanocomposite solid polymer electrolytes for lithium ion-conducting devices. SN Appl. Sci. 1(1), 112 (2019)

    Article  Google Scholar 

  36. A. Saeed et al., Electrical and dielectric properties of the natural calcite and quartz. SILICON 14(10), 5265–5276 (2022)

    Article  CAS  Google Scholar 

  37. R. Kurniawan et al., Polarization behavior of zinc oxide thin films studied by temperature dependent spectroscopic ellipsometry. Opt. Mater. Express 7(11), 3902–3908 (2017)

    Article  CAS  Google Scholar 

  38. S. Ramesh, C.-W. Liew, Dielectric and FTIR studies on blending of [xPMMA–(1−x) PVC] with LiTFSI. Measurement 46(5), 1650–1656 (2013)

    Article  Google Scholar 

  39. A. Abdelghany, A. Oraby, M. Farea, Influence of green synthesized gold nanoparticles on the structural, optical, electrical and dielectric properties of (PVP/SA) blend. Phys. B 560, 162–173 (2019)

    Article  CAS  Google Scholar 

  40. A. Langar et al., Structure and electrical characterization of ZnO–Ag phosphate glasses. Res. Phys. 7, 1022–1029 (2017)

    Google Scholar 

  41. H.J.C.I. Ragab, Optical, thermal and electrical characterization of PEO/CMC incorporated with ZnO/TiO2 NPs for advanced flexible optoelectronic technologies. Ceram. Int. 49(8), 12563–12569 (2023)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledges with thanks the Hail University, Saudi Arabia technical and financial support.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

HMR: Investigation, Writing—Review & Editing. MOF: Investigation, Writing—Review & Editing.

Corresponding author

Correspondence to H. M. Ragab.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This research did not contain any studies involving animal or human participants nor did it take place on any private or protected areas hence no specific permissions were required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ragab, H.M., Farea, M.O. Structural, optical, and electrical enhancement of polyethylene oxide (PEO) and sodium alginate (NaAlg) through embedding silver nanoparticles (Ag NP) for optoelectrical applications. J Mater Sci: Mater Electron 34, 2079 (2023). https://doi.org/10.1007/s10854-023-11524-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11524-1

Navigation