Skip to main content
Log in

The investigation of frequency dependent dielectric properties and ac conductivity by impedance spectroscopy in the Al/(Cu-doped Diamond Like Carbon)/Au structures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In order to perform metal-interlayer-semiconductor (MIS) Schottky diodes (SDs) with a greater barrier height (BH), various materials are used at M/S interface as interlayer. Here, the interlayer material's characteristics are crucial, notably the need for characteristics like substrate adhesion, thermal-stability, and low-resistance. Due to its exceptional qualities, diamond-like carbon (DLC), one of the favored materials, was chosen in this investigation. To create the Al/(Cu-DLC)/p-Si/Au MIS type SD in this case, a copper-doped diamond-like carbon (Cu-DLC) nanocomposite film was electrochemically formed as an interlayer. Scanning electron microscopy (SEM) was also used to evaluate the electrodeposited (Cu-DLC) film. The impedance spectroscopy (IS) technique was used to analyze the real-imaginary components of complex dielectric (ε′, ε″) and electric modulus (M′, M″), tangent-loss \((\mathrm{tan}\delta )\) and ac electrical conductivity \(({\sigma }_{ac})\) in wide range of frequency (3 kHz–3 MHz) and voltage (± 4.0 V). All these parameters derived from the impedance-measurements were found strong function of frequency and voltage at low-moderate frequencies due to a unique distribution of surface states \({(N}_{ss})\) at (Cu-DLC)/p-Si interface and interfacial/dipole polarizations. As frequency rises, M′ and M″, values rise while ε′ and ε″ values decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S.H. Wan, L.P. Wang, Q.J. Xue, Electrochemical deposition of sulfur doped DLC nanocomposite film at atmospheric pressure. Electrochem. Commun. 12, 61–65 (2010)

    Article  CAS  Google Scholar 

  2. W. Xu, K.S. Zhou, S.S. Lin, M.J. Dai, Q. Shi, C.B. Wei, Structural properties of hydrogenated Al-doped diamond-like carbon films fabricated by a hybrid plasma system. Diam. Relat. Mater. 87, 177–185 (2018)

    Article  CAS  Google Scholar 

  3. N. Basman, N. Aslan, O. Uzun, G. Cankaya, U. Kolemen, Electrical characterization of metal/diamond-like carbon/inorganic semiconductor MIS Schottky barrier diodes. Microelectron. Eng. 140, 18–22 (2015)

    Article  CAS  Google Scholar 

  4. N. Basman, R. Uzun, E. Gocer, E. Bacaksiz, U. Kolemen, Electrodeposition of Si-DLC nanocomposite film and its electronic application. Microsyst Technol 24, 2287–2294 (2018)

    Article  CAS  Google Scholar 

  5. S.M. Sze, Y. Li, K.K. Ng, Physics of Semiconductor Devices, 4th edn. (Wiley, New York, 2021)

    Google Scholar 

  6. S. Alptekin, S.O. Tan, S. Altindal, Determination of surface states energy density distributions and relaxation times for a metal-polymer-semiconductor structure. IEEE Trans. Nanotechnol. 18, 1196–1199 (2019)

    Article  CAS  Google Scholar 

  7. S. Altindal, A. Barkhordari, Y. Azizian-Kalandaragh, B.S. Cevrimli, H.R. Mashayekhi, Dielectric properties and negative-capacitance/dielectric in Au/n-Si structures with PVC and (PVC:Sm2O3) interlayer. Mater. Sci. Semicond. Process 147, 106754 (2022)

    Article  CAS  Google Scholar 

  8. A.F. Mansour, Improvement structural and optical properties of ZnO/PVA Nanocomposites. IOSR J. Appl. Phys. 7, 60–69 (2015)

    Google Scholar 

  9. E.E. Tanrikulu, S.A. Yeriskin, On the changes in the dielectric, electric modulus, and ac electrical-conductivity in the Al/(C(29)H(32)O17)/p-Si (MPS) structures in wide range of frequency and voltage. Physica B 623, 413345 (2021)

    Article  Google Scholar 

  10. A. Barkhordari, S. Ozcelik, G. Pirgholi-Givi, H.R. Mashayekhi, S. Altindal, Y. Azizian-Kalandaragh, Dielectric properties of PVP: BaTiO3 iInterlayer in the Al/PVP:BaTiO3/p-Si structure. Silicon-Neth 14, 5437–5443 (2022)

    Article  CAS  Google Scholar 

  11. S. Demirezen, S.A. Yeriskin, Frequency and voltage-dependent dielectric spectroscopy characterization of Al/(Coumarin-PVA)/p-Si structures. J. Mater. Sci.: Mater. Electron. 32, 25339–25349 (2021)

    CAS  Google Scholar 

  12. S. Alptekin, S. Altindal, Electrical characteristics of Au/PVP/n-Si structures using admittance measurements between 1 and 500 kHz. J. Mater. Sci.: Mater. Electron. 31, 13337–13343 (2020)

    CAS  Google Scholar 

  13. S.O. Tan, O. Cicek, C.G. Turk, S. Altindal, Dielectric properties, electric modulus and conductivity profiles of Al/Al2O3/p-Si type MOS capacitor in large frequency and bias interval. Eng. Sci. Technol. 27, 101017 (2022)

    Google Scholar 

  14. O. Sevgili, I. Tascioglu, S. Boughdachi, Y. Azizian-Kalandaragh, S. Altindal, Examination of dielectric response of Au/HgS-PVA/n-Si (MPS) structure by impedance spectroscopy method. Physica B 566, 125–135 (2019)

    Article  CAS  Google Scholar 

  15. S. Alptekin, S. Altindal, A comparative study on current/capacitance: voltage characteristics of Au/n-Si (MS) structures with and without PVP interlayer. J. Mater. Sci.: Mater. Electron. 30, 6491–6499 (2019)

    CAS  Google Scholar 

  16. A. Manjunath, Studies on AC electrical conductivity and dielectric properties of PVA/NH4NO3 solid polymer electrolyte films. Adv. Mater. Phys. Chem. 5, 295–301 (2015)

    Article  CAS  Google Scholar 

  17. S. Alptekin, A. Tataroglu, S. Altinda, Dielectric, modulus and conductivity studies of Au/PVP/n-Si (MPS) structure in the wide range of frequency and voltage at room temperature. J. Mater. Sci.: Mater. Electron. 30, 6853–6859 (2019)

    CAS  Google Scholar 

  18. E.H. Nicollian, J.R. Brews, J.R. Brews, MOS (metal oxide semiconductor) physics and technology (Wiley, New York, 1982)

    Google Scholar 

  19. S.M. Sze, Citation classic - physics of semiconductor-devices. Curr. Cont. Eng. Technol. Appl. Sci. 1(27), 28 (1982)

    Google Scholar 

  20. A.M. Akbas, A. Tataroglu, S. Altindal, Y. Azizian-Kalandaragh, Frequency dependence of the dielectric properties of Au/(NG:PVP)/n-Si structures. J. Mater. Sci.: Mater. Electron. 32, 7657–7670 (2021)

    CAS  Google Scholar 

  21. A. Buyukbas-Ulusan, S.A. Yeriskin, A. Tataroglu, M. Balbasi, Y.A. Kalandaragh, Electrical and impedance properties of MPS structure based on (Cu2O-CuO-PVA) interfacial layer. J. Mater. Sci.: Mater. Electron. 29, 8234–8243 (2018)

    CAS  Google Scholar 

  22. V.R. Reddy, Electrical and interfacial properties of Au/n-InP Schottky contacts with nickel phthalocyanine (NiPc) interlayer. Indian J. Phys. 89, 463–469 (2015)

    Article  Google Scholar 

  23. A. Chelkowski, Dielectric Physics (Elsevier, Amsterdam, 1980)

    Google Scholar 

  24. M. Popescu, I. Bunget, Physics of Solid Dielectrics (Elsevier, Amsterdam, 1984)

    Google Scholar 

  25. K. Bewilogua, D. Hofmann, History of diamond-like carbon films - From first experiments to worldwide applications. Surf. Coat. Technol. 242, 214–225 (2014)

    Article  CAS  Google Scholar 

  26. A. Niemczyk, D. Moszynski, A. Goszczynska, M. Kwiatkowska, A. Jedrzejczak, D. Nowak, J.G. Sosnicki, M. El Fray, J. Baranowska, Understanding the DLC film-Polyamide 12 substrate interrelation during pulsed laser deposition. Appl. Surf. Sci. 576, 151872 (2022)

    Article  CAS  Google Scholar 

  27. S. Takabayashi, S. Ogawa, Y. Takakuwa, H.C. Kang, R. Takahashi, H. Fukidome, M. Suemitsu, T. Suemitsu, T. Otsuji, Carbonaceous field effect transistor with graphene and diamondlike carbon. Diam. Relat. Mater. 22, 118–123 (2012)

    Article  CAS  Google Scholar 

  28. M. Gao, S.-B. Kim, Y. Li, S.H. Ramaswamy, J. Choi, Triboelectric nanogenerator with enhanced output and durability based on Si-DLC films, Nano Energy. Nano Energy 105, 107997 (2023)

    Article  CAS  Google Scholar 

  29. Y. Zhao, F. Xu, J. Xu, D. Li, S. Sun, C. Gao, W. Zhao, W. Lang, J. Liu, D. Zuo, Effect of the bias-graded increment on the tribological and electrochemical corrosion properties of DLC films. Diam. Relat. Mater. 130, 109421 (2022)

    Article  CAS  Google Scholar 

  30. S.M. Fayed, D.X. Chen, S.L. Li, Y.W. Zhou, H.B. Wang, M.M. Sadawy, Corrosion behavior and passive stability of multilayer DLC-Si coatings. Surf. Coat Tech. 431, 128001 (2022)

    Article  CAS  Google Scholar 

  31. N. Aslan, M.S. Kurt, M.M. Koc, Morpho-structural and optoelectronic properties of diamond like carbon-germanium (DLC-Ge) composite thin films produced by magnetron sputtering. Opt. Mater. 126, 112229 (2022)

    Article  Google Scholar 

  32. J.H. Sui, W. Cai, Effect of diamond-like carbon (DLC) on the properties of the NiTi alloys. Diam. Relat. Mater. 15, 1720–1726 (2006)

    Article  CAS  Google Scholar 

  33. P.Z. Zhang, R.S. Li, H. Yang, Y.C. Feng, E.Q. Xie, Enhanced electron field emission from ZnO nanoparticles-embedded DLC films prepared by electrochemical deposition. Solid State Sci. 14, 715–718 (2012)

    Article  CAS  Google Scholar 

  34. J.L. Jiang, J.F. Du, Q. Wang, X. Zhang, W.J. Zhu, R.S. Li, H. Yang, Enhanced field emission properties from graphene-TiO2/DLC nanocomposite films prepared by ultraviolet-light assisted electrochemical deposition. J. Alloy Compd. 686, 588–592 (2016)

    Article  CAS  Google Scholar 

  35. M.I. Khan, F. Adil, S. Majeed, W.A. Farooq, M.S. Hasan, R. Jabeen, M.A. Al-Mutairi, A. Bukhtiar, M. Iqbal, Structural, morphological, electrical and optical properties of Cu doped DLC thin films. Mater. Res. Express 6(12), 126420 (2019)

    Article  CAS  Google Scholar 

  36. P. Choudhary, P. Saxena, A. Yadav, V.N. Rai, A. Mishra, Synthesis and characterization of Cu-doped ZnCdO nanomaterials with improved dielectric and impedance properties for potential applications. Ionics 25, 4991–5001 (2019)

    Article  CAS  Google Scholar 

  37. K. Omri, S. Gouadria, Dielectric investigation and effect of low copper doping on optical and morphology properties of ZO-Cu nanoparticles. J. Mater. Sci.: Mater. Electron. 32, 17021–17031 (2021)

    CAS  Google Scholar 

  38. K.S. Mohan, A. Panneerselvam, R. Marnadu, J. Chandrasekaran, M. Shkir, A. Tataroglu, A systematic influence of Cu doping on structural and opto-electrical properties of fabricated Yb2O3 thin films for Al/Cu-Yb2O3/p-Si Schottky diode applications. Inorg. Chem. Commun. 129, 108646 (2021)

    Article  CAS  Google Scholar 

  39. N. Dwivedi, S. Kumar, H.K. Malik, C. Sreekumar, S. Dayal, C.M.S. Rauthan, O.S. Panwar, Investigation of properties of Cu containing DLC films produced by PECVD process. J. Phys. Chem. Solids 73, 308–316 (2012)

    Article  CAS  Google Scholar 

  40. K.-C. Kao, Dielectric phenomena in solids: with emphasis on physical concepts of electronic processes (Academic Press, Boston, 2004)

    Google Scholar 

  41. A.B. Ulusan, A. Tataroglu, Frequency-dependent dielectric parameters of Au/TiO2/n-Si (MIS) structure. Silicon-Neth 10, 2071–2077 (2018)

    Article  CAS  Google Scholar 

  42. H.E. Lapa, A. Kokce, A.F. Ozdemir, I. Uslu, S. Altindal, A comparative study on dielectric behaviours of Au/(Zn-doped PVA)/n-4H-SiC (MPS) structures with different interlayer thicknesses using impedance spectroscopy methods. Bull. Mater. Sci 41, 1–6 (2018)

    Article  CAS  Google Scholar 

  43. N. Baraz, I. Yucedag, Y. Azizian-Kalandaragh, S. Altindal, Determining electrical and dielectric parameters of dependence as function of frequencies in Al/ZnS-PVA/p-Si (MPS) structures. J Mater Sci-Mater El 28, 1315–1321 (2017)

    Article  CAS  Google Scholar 

  44. I. Orak, A. Kocyigit, S. Alindal, Electrical and dielectric characterization of Au/ZnO/n-Si device depending frequency and voltage. Chinese Phys B 26(2), 028102 (2017)

    Article  Google Scholar 

  45. R. Ertugrul, A. Tataroglu, Influence of temperature and frequency on dielectric permittivity and ac conductivity of Au/SnO2/n-Si (MOS) structures. Chinese Phys. Lett. 29(7), 077304 (2012)

    Article  Google Scholar 

  46. A. Philip, S. Thomas, R. Nisha, K.R. Kumar, Effect of frequency and bias voltage on the electrical and dielectric properties of atomic layer deposited Al/Al2O3/ p-Si MOS structure at room temperature. Indian J. Pure Appl. Phys. 53, 464–469 (2015)

    Google Scholar 

  47. R. Tripathi, A. Kumar, C. Bharti, T.P. Sinha, Dielectric relaxation of ZnO nanostructure synthesized by soft chemical method. Curr. Appl. Phys. 10, 676–681 (2010)

    Article  Google Scholar 

  48. S.A. Yeriskin, M. Balbasi, A. Tataroglu, Frequency and voltage dependence of dielectric properties, complex electric modulus, and electrical conductivity in Au/7% graphene doped-PVA/n-Si (MPS) structures. J. Appl. Polym. Sci. (2016). https://doi.org/10.1002/app.43827

    Article  Google Scholar 

  49. P.S. Anantha, K. Hariharan, ac conductivity analysis and dielectric relaxation behaviour of NaNO3-Al2O3 composites. Mater. Sci. Eng. B-Solid 121, 12–19 (2005)

    Article  Google Scholar 

  50. A. Chakrabarti, J. Bera, T.P. Sinha, Dielectric properties of BaBi4Ti4O15 ceramics produced by cost-effective chemical method. Physica B 404, 1498–1502 (2009)

    Article  CAS  Google Scholar 

  51. A.K. Dubey, P. Singh, S. Singh, D. Kumar, O. Parkash, Charge compensation, electrical and dielectric behavior of lanthanum doped CaCu3Ti4O12. J. Alloy Compd. 509, 3899–3906 (2011)

    Article  CAS  Google Scholar 

  52. T. Badapanda, R.K. Harichandan, S.S. Nayak, A. Mishra, S. Anwar, Frequency and temperature dependence behaviour of impedance, modulus and conductivity of BaBi4Ti4O15 Aurivillius ceramic. Process Appl. Ceram. 8, 145–153 (2014)

    Article  Google Scholar 

  53. M. Ram, S. Chakrabarti, Dielectric and modulus studies on LiFe1/2Co1/2VO4. J. Alloy Compd. 462, 214–219 (2008)

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written with the contributions of all authors. All authors have approved the final version of the manuscript. AFV: Investigation, measurements, writing, review & editing. SA: Investigation, measurements, writing, review & editing. NB: Investigation, measurements, writing, review & editing. MU: Investigation, measurements, writing, review & editing. YŞA: Investigation, measurements, writing, review & editing. ŞA: Investigation, writing, review & editing, supervision.

Corresponding author

Correspondence to Y. Şafak Asar.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feizollahi Vahid, A., Alptekin, S., Basman, N. et al. The investigation of frequency dependent dielectric properties and ac conductivity by impedance spectroscopy in the Al/(Cu-doped Diamond Like Carbon)/Au structures. J Mater Sci: Mater Electron 34, 1118 (2023). https://doi.org/10.1007/s10854-023-10546-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10546-z

Navigation