Skip to main content

Advertisement

Log in

Effect of excitation condition and Mn2+ doping on the red-to-green emission ratio in NaYF4:Er3+/Yb3+ phosphors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Rare earth ions doped up-conversion luminescent materials have attracted massive attention owing to their unique nonlinear optical properties of converting multiple low-energy photons into high-energy photons and potential application in many fields, especially in information storage and anti-counterfeiting. In this paper, the red-to-green emission ratio of NaYF4:Er3+/Yb3+ phosphors was adjusted through power density, pulse width and frequency. The results displayed that the red-to-green emission ratio enhanced with power density, pulse width and frequency increasing. The increase was not obvious with the increase of power density because of the combined effect of two-photon up-conversion processes and the increase rate of nonradiative relaxation process 2H11/2/4S3/2 → 4F9/2 (Er3+). The ratio changes with pulse width and frequency were originated to different non-steady-state up-conversion processes of red and green emissions. The ratio can also be changed from 0.75 to 0.98 by inducing Mn2+ ions in NaYF4:Er3+/Yb3+ phosphors, which is cause by the energy transfers among the energy levels 2H11/2/4S3/2 (Er3+), 4T1 (Mn2+), and 4F9/2 (Er3+). All methods of tuning the ratio of red-to-green emissions can be used in fields of information storage and optical encryption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. G. Chen, H. Qiu, P.N. Prasad, X. Chen, Chem. Rev. 114, 5161 (2014)

    Article  CAS  Google Scholar 

  2. X. Li, R. Wang, F. Zhang, Nano Lett. 14, 3634 (2014)

    Article  Google Scholar 

  3. M. Ding, D. Chen, Z. Wan, Y. Zhou, J. Zhong, J. Xi, Z. Ji, J. Mater. Chem. C 3, 5372 (2015)

    Article  CAS  Google Scholar 

  4. J. Park, K. Kim, E.J. Jo, W. Kim, H. Kim, R. Lee, J. Lee, J. Jo, M.G. Kim, G.Y. Jung, Nanoscale 11, 22813 (2019)

    Article  CAS  Google Scholar 

  5. M. Runowski, P. Wozny, N. Stopikowska, Q. Guo, S. Lis, ACS Appl. Mater. Inter. 11, 4131 (2019)

    Article  CAS  Google Scholar 

  6. W. You, D. Tu, R. Li, W. Zheng, X. Chen, Nano Res. 12, 1417 (2019)

    Article  CAS  Google Scholar 

  7. F. Heine, E. Heumann, T. Danger, T. Schweizer, G. Huber, B. Chai, Appl. Phys. Lett. 65, 383 (1994)

    Article  CAS  Google Scholar 

  8. S. Yu, D. Jang, H. Yuan, W.T. Huang, M. Kim, F. Marques Mota, R.S. Liu, H. Lee, S. Kim, D.H. Kim, ACS Appl. Mater. Inter. 13, 58422 (2021)

    Article  CAS  Google Scholar 

  9. H. Jia, D. Li, D. Zhang, Y. Dong, S. Ma, M. Zhou, W. Di, W. Qin, A.C.S. Appl, Mater. Inter. 13, 4402 (2021)

    Article  CAS  Google Scholar 

  10. J. Zuo, W. Wang, D. Zhang, X. Wang, Y. Ma, P. Li, Y. Li, W. Sun, Y. Zhang, L. Tu, Y. Chang, Q. Li, H. Zhang, Appl. Surf. Sci. 575, 151701 (2022)

    Article  CAS  Google Scholar 

  11. Z. Li, Q. Han, T. Yan, Z. Huang, Y. Song, Y. Wang, X. Zhang, J. Alloy Compd. 904, 164009 (2022)

    Article  CAS  Google Scholar 

  12. T. Zheng, M. Runowski, N. Stopikowska, M. Skwierczyńska, S. Lis, P. Du, L. Luo, J. Alloy. Compd. 890, 161830 (2022)

    Article  CAS  Google Scholar 

  13. D. Zhang, S. Liang, S. Yao, H. Li, J. Liu, Y. Geng, X. Pu, Sep. Purif. Technol. 248, 117040 (2020)

    Article  CAS  Google Scholar 

  14. T. Blumenthal, J. Meruga, P.S. May, J. Kellar, W. Cross, K. Ankireddy, S. Vunnam, Q.N. Luu, Nanotechnology 23, 185305 (2012)

    Article  Google Scholar 

  15. M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, F. Xu, Nanoscale 7, 4423 (2015)

    Article  CAS  Google Scholar 

  16. A. Baride, J.M. Meruga, C. Douma, D. Langerman, G. Crawford, J.J. Kellar, W.M. Cross, P.S. May, RSC Adv. 5, 101338 (2015)

    Article  CAS  Google Scholar 

  17. K. Huang, N.M. Idris, Y. Zhang, Small 12, 836 (2016)

    Article  CAS  Google Scholar 

  18. H. Zhang, Y. Fan, P. Pei, C. Sun, L. Lu, F. Zhang, Angew. Chem. Int. Edit. 58, 10153 (2019)

    Article  CAS  Google Scholar 

  19. H. Suo, Q. Zhu, X. Zhang, B. Chen, J. Chen, F. Wang, Mater. Today Phys. 21, 100520 (2021)

    Article  CAS  Google Scholar 

  20. X. Fu, S. Fu, Q. Lu, J. Zhang, P. Wan, J. Liu, Y. Zhang, C.H. Chen, W. Li, H. Wang, Q. Mei, Nat. Commun. 13, 1 (2022)

    Google Scholar 

  21. B. Cao, Y. Bao, Y. Liu, J. Shang, Z. Zhang, Y. He, Z. Feng, B. Dong, Chem. Eng. J. 385, 123906 (2020)

    Article  CAS  Google Scholar 

  22. H. Rijckaert, S. Premcheska, S. Mohanty, J. Verduijn, A. Skirtach, A.M. Kaczmarek, Phys. B 626, 413453 (2022)

    Article  CAS  Google Scholar 

  23. Y. Feng, Z. Li, Q. Li, J. Yuan, L. Tu, L. Ning, H. Zhang, Light: Sci. Appl. 10, 1 (2021)

    Google Scholar 

  24. G.S. Yi, G.M. Chow, Adv. Funct. Mater. 16, 2324 (2006)

    Article  CAS  Google Scholar 

  25. C. Homann, L. Krukewitt, F. Frenzel, B. Grauel, C. Würth, U. Resch-Genger, M. Haase, Angew Chem. Int. Edit. 57, 8765 (2018)

    Article  CAS  Google Scholar 

  26. J. Li, Y. Wang, X. Zhang, L. Li, H. Hao, Nanomaterials 11, 2660 (2021)

    Article  CAS  Google Scholar 

  27. W. Liu, W. Zhang, R. Liu, G. Li, New J. Chem. 45, 9818 (2021)

    Article  CAS  Google Scholar 

  28. Q. Shao, G. Zhang, L. Ouyang, Y. Hu, Y. Dong, J. Jiang, Nanoscale 9, 12132 (2017)

    Article  CAS  Google Scholar 

  29. K. Lingeshwar Reddy, R. Balaji, A. Kumar, V. Krishnan, Small 14, 18 (2018)

    Article  Google Scholar 

  30. Q. Xiao, X. Dong, X. Yin, H. Wang, H. Zhong, B. Dong, X. Luo, Mater. Res. Bull. 141, 111326 (2021)

    Article  CAS  Google Scholar 

  31. T. Gao, X. Zhu, X.J. Wu, B. Zhang, H.L. Liu, J. Phys. Chem. C 125, 732 (2021)

    Article  CAS  Google Scholar 

  32. S. Li, L. Tan, W. Wang, Z. Chen, S. Kang, C. Gao, C. Lin, J. Am. Ceram. Soc. 106, 1015 (2023)

    Article  CAS  Google Scholar 

  33. W. Gao, H. Zheng, Q. Han, E. He, F. Gao, R. Wang, J. Mater. Chem. C 2, 5327 (2014)

    Article  CAS  Google Scholar 

Download references

Funding

The work was financially supported by the National Natural Science Foundation of China (Grant No. 12004217) and the Natural Science Foundation of Shandong Province (Grant No. ZR201910230199 and ZR201910230202).

Author information

Authors and Affiliations

Authors

Contributions

MZ: implemented the research scheme and wrote the manuscript. HH: reviewed and edited the article. LL: reviewed and edited the article.

Corresponding authors

Correspondence to Haoyue Hao or Liang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies involving humans and animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3138 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Hao, H. & Li, L. Effect of excitation condition and Mn2+ doping on the red-to-green emission ratio in NaYF4:Er3+/Yb3+ phosphors. J Mater Sci: Mater Electron 34, 869 (2023). https://doi.org/10.1007/s10854-023-10263-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10263-7

Navigation