Skip to main content
Log in

Bi-polar switching properties of FTO/CZTS/Ag device

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Copper Zinc Tin Sulfide (CZTS) is a well-known kesterite material having a variety of optoelectronic applications. The constituent elements are earth abundant and non-toxic in nature. This investigation presents the bipolar switching characteristics of FTO/CZTS/Ag devices for resistive memory-switching applications. The material is deposited by spray pyrolysis method at a substrate temperature of 375 °C. The structural analysis shows the crystalline nature of the films. FESEM image reveals coral-like morphology. A resistive memory-switching device is fabricated with a structure of < FTO/CZTS/Ag>. The observed HRS/LRS resistance ratio of ~ 33 suggests that the device possesses good memory-switching properties. The formation and rupture of the conductive filaments of the FTO/CZTS/Ag memory device were observed. This confirms that CZTS material can be used as the switching layer to fabricate a simple, cost-effective, and non-toxic bipolar device, which can deliver the perfect switching characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this manuscript.

References

  1. S.B. Patel, J.V. Gohel, J. Mater. Sci. Mater. Electron. 29, 18151 (2018)

    Article  CAS  Google Scholar 

  2. V. Mahalakshmi, D. Venugopal, K. Ramachandran, R. Ramesh, J. Mater. Sci. Mater. Electron. 33, 8493 (2022)

    Article  CAS  Google Scholar 

  3. O.P. Singh, A. Sharma, K.S. Gour, S. Husale, V.N. Singh, Sol. Energy Mater. Sol. Cells 157, 28 (2016)

    Article  CAS  Google Scholar 

  4. N.S. Sterin, T. Nivedya, S.S. Mal, P.P. Das, J. Mater. Sci. Mater. Electron. 33, 2101 (2022)

    Article  CAS  Google Scholar 

  5. X.F. Dong, Y. Zhao, T.T. Zheng, X. Li, C.W. Wang, W.M. Li, Y. Shao, Y. Li, J. Phys. Chem. C 125, 923 (2021)

    Article  CAS  Google Scholar 

  6. A. Rasool, R. Amiruddin, S. Kossar, M.S. Kumar, J. Mater. Sci. Mater. Electron. 33, 2090 (2022)

    Article  CAS  Google Scholar 

  7. A. Rasool, R. Amiruddin, I.R. Mohamed, M.C.S. Kumar, Superlattices Microstruct. 147, 106682 (2020)

    Article  CAS  Google Scholar 

  8. Y. Chen, L. Su, M. Jiang, X. Fang, J. Mater. Sci. Technol. 105, 259 (2022)

    Article  Google Scholar 

  9. T. Yan, S. Cai, Z. Hu, Z. Li, X. Fang, J. Phys. Chem. Lett. 12, 9912 (2021)

    Article  CAS  Google Scholar 

  10. T. Yanagida, K. Nagashima, K. Oka, M. Kanai, A. Klamchuen, B.H. Park, T. Kawai, Sci. Rep. 3, 1 (2013)

    Google Scholar 

  11. N. Ciocchini, M. Laudato, M. Boniardi, E. Varesi, P. Fantini, A.L. Lacaita, D. Ielmini, Sci. Rep. 6, 1 (2016)

    Article  Google Scholar 

  12. H.C. Liu, X.G. Tang, Q.X. Liu, Y.P. Jiang, W.H. Li, XBin Guo, Z.H. Tang, Ceram. Int. 46, 21196 (2020)

    Article  CAS  Google Scholar 

  13. S. Bera, A.K. Katiyar, A.K. Sinha, S.P. Mondal, S.K. Ray, Mater. Des. 101, 197 (2016)

    Article  CAS  Google Scholar 

  14. Z. Hu, F. Cao, T. Yan, L. Su, X. Fang, J. Mater. Chem. C 11, 244 (2022)

    Article  Google Scholar 

  15. S.P. Madhusudanan, K. Mohanta, S.K. Batabyal, J. Solid State Electrochem. 23, 1307 (2019)

    Article  CAS  Google Scholar 

  16. G. Rajesh, N. Muthukumarasamy, S. Agilan, D. Velauthapillai, K. Mohanta, S.K. Batabyal, Mater. Lett. 220, 285 (2018)

    Article  CAS  Google Scholar 

  17. S. Brivio, G. Tallarida, E. Cianci, S. Spiga, Nanotechnology 25, 385705 (2014)

    Article  CAS  Google Scholar 

  18. K.H. Chen, T.M. Tsai, C.M. Cheng, S.J. Huang, K.C. Chang, S.P. Liang, T.F. Young, Materials (Basel). 11, 43 (2017)

    Article  Google Scholar 

  19. J. Racko, J. Pecháček, M. Mikolášek, P. Benko, A. Grmanová, L. Harmatha, J. Breza, Radioengineering 22, 240 (2013)

    Google Scholar 

  20. K.H. Chen, C.M. Cheng, C.Y. Li, S.J. Huang, Microelectron. Reliab. 91, 330 (2018)

    Article  CAS  Google Scholar 

  21. S. Yiğit Gezgin, H. Kılıç, Optik (Stuttg) 182, 356 (2019)

    Article  Google Scholar 

  22. S.A. Khalate, R.S. Kate, J.H. Kim, S.M. Pawar, R.J. Deokate, Superlattices Microstruct. 103, 335 (2017)

    Article  CAS  Google Scholar 

  23. K. Diwate, K. Mohite, M. Shinde, S. Rondiya, A. Pawbake, A. Date, H. Pathan, S. Jadkar, Energy Procedia 110, 180 (2017)

    Article  CAS  Google Scholar 

  24. P. Aabel, M.C. Santhosh Kumar, Int. J. Energy Res. 44, 7778 (2020)

    Article  Google Scholar 

  25. P.K. Sarswat, Y.R. Smith, M.L. Free, M. Misra, ECS J. Solid State Sci. Technol. 4, Q83 (2015)

    Article  CAS  Google Scholar 

  26. A. Shariffar, H. Salman, T.A. Siddique, W. Gebril, M.O. Manasreh, Micro Nano Lett. 15, 853 (2020)

    Article  CAS  Google Scholar 

  27. J.M. Montero, J. Bisquert, G. Garcia-Belmonte, E.M. Barea, H.J. Bolink, Org. Electron. 10, 305 (2009)

    Article  CAS  Google Scholar 

  28. N. Bitri, S. Mahjoubi, M. Abaab, I. Ly, Mater. Lett. 219, 194 (2018)

    Article  CAS  Google Scholar 

  29. M. Uda, A. Nakamura, T. Yamamoto, J. Electron Spectros. Relat. Phenomena 91, 643 (1998)

    Article  Google Scholar 

  30. R. Jaramillo, S. Ramanathan, Sol. Energy Mater. Sol. Cells 95, 602 (2011)

    Article  CAS  Google Scholar 

  31. A. Rasool, R. Amiruddin, S. Kossar, M.C. Santhosh Kumar, J. Appl. Phys. 128, 044503 (2020)

    Article  CAS  Google Scholar 

  32. A.R. Lee, Y.C. Bae, G.H. Baek, J.B. Chung, S.H. Lee, H.S. Im, J.P. Hong, J. Mater. Chem. C 4, 823 (2015)

    Article  Google Scholar 

  33. F. Gul, H. Efeoglu, Superlattices Microstruct. 101, 172 (2017)

    Article  CAS  Google Scholar 

  34. X. Chen, H. Zhou, G. Wu, D. Bao, Appl. Phys. A Mater. Sci. Process. 104, 477 (2011)

    Article  CAS  Google Scholar 

  35. S. Zou, P. Xu, M.C. Hamilton, Electron. Lett. 49, 829 (2013)

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other supports were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

PA contributed to conceptualization, methodology, investigation, formal analysis, and writing of the original draft. SSGS contributed to investigation, RA contributed to investigation, MCSK contributed to supervision, conceptualization, resources, and writing, reviewing, & editing of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. C. Santhosh Kumar.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aabel, P., Sai Guru Srinivasan, S., Amiruddin, R. et al. Bi-polar switching properties of FTO/CZTS/Ag device. J Mater Sci: Mater Electron 34, 601 (2023). https://doi.org/10.1007/s10854-023-10011-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10011-x

Navigation