Skip to main content
Log in

A polyethanolamine nanodendrimer as a magnetic hybrid material for fast adsorption of heavy metal contaminants

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A triazine-based dendrimer-coated magnetic nanomaterial (Fe3O4@SiO2@D-G3) was successfully synthesized. The structure and composition of the synthesized catalyst were characterized by FT-IR, XRD, EDX, SEM, TEM, TGA, and VSM techniques. Structural characterization of the newly synthesized adsorbent confirmed the modification of magnetic nanoparticles by dendrimer molecules. The adsorption performance of this novel dendritic nanomaterial was evaluated for the removal of heavy metal contaminants with sustainability concerns. The effect of essential parameters, including pH, initial metal ion concentration, adsorbent dosage, and contact time was investigated. The prepared adsorbent showed good binding ability with Pb(II) and Cd(II) metal ions and excellent adsorption efficiency toward these contaminants from aqueous media (93.6%, 98.5%). The heavy metal ions could be adsorbed by coordination to the hydroxyl and amine functional groups of ethanolamine moiety and also triazine amine groups and electrostatic interactions. The adsorption process with Pb(II) and Cd(II) metal ions was exothermic and fitted perfectly with the Freundlich isotherm with a high correlation coefficient (R2 = 0.9739, 0.9069) and adsorption capacity (24.317, 84.68 mg g−1) and pseudo-second-order kinetic model. Recycled hybrid nanomaterial was dried and applied to different adsorption–desorption tests and desorption efficiency was found to be 98%. The results provide new insights into the applications of dendrimer-decorated magnetic nanoparticles in the fast removal of heavy metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. G. Di Bella, A.G. Potortì, V. Lo Turco, D. Bua, P. Licata, N. Cicero, G. Dugo, Trace elements in Thunnus thynnus from Mediterranean Sea and benefit–risk assessment for consumers. Food Addit. Contam. 8(3), 175–181 (2015)

    Article  Google Scholar 

  2. C. Zou, W. Jiang, J. Liang, X. Sun, Y. Guan, Removal of Pb (II) from aqueous solutions by adsorption on magnetic bentonite. Environ. Sci. Pollut. Res. 26(2), 1315–1322 (2019)

    Article  CAS  Google Scholar 

  3. A. Mittal, M. Naushad, G. Sharma, Z. ALothman, S. Wabaidur, M. Alam, Fabrication of MWCNTs/ThO2 nanocomposite and its adsorption behavior for the removal of Pb (II) metal from aqueous medium. Desalin. Water Treat. 57(46), 21863–21869 (2016)

    Article  CAS  Google Scholar 

  4. A. Maleki, E. Pajootan, B. Hayati, Ethyl acrylate grafted chitosan for heavy metal removal from wastewater: equilibrium, kinetic and thermodynamic studies. J. Taiwan Inst. Chem. Eng. 51, 127–134 (2015)

    Article  CAS  Google Scholar 

  5. Z. Imen, A.H. Hassani, S.M. Borghaee, Comparison of the effectiveness of natural dolomite and modified dolomite in the removal of heavy metals from aqueous solutions. J. Adv. Environ. Health. Res. 7(1), 61–74 (2019)

    CAS  Google Scholar 

  6. L. Gao, H. Yin, X. Mao, H. Zhu, W. Xiao, D. Wang, Directing carbon nanotubes from aqueous phase to o/w interface for heavy metal uptaking. Environ. Sci. Pollut. Res. 22(18), 14201–14208 (2015)

    Article  CAS  Google Scholar 

  7. C.M. Hogan, Heavy metal, in Encyclopedia of earth. ed. by E. Monosson, C. Cleveland (National Council for Science and the Environment, Washington, 2010)

    Google Scholar 

  8. M. Devaraj, R. Saravanan, R. Deivasigamani, V.K. Gupta, F. Gracia, S. Jayadevan, Fabrication of novel shape Cu and Cu/Cu2O nanoparticles modified electrode for the determination of dopamine and paracetamol. J. Mol. Liq. 221, 930–941 (2016)

    Article  CAS  Google Scholar 

  9. S. Gunatilake, Methods of removing heavy metals from industrial wastewater. Methods 1(1), 14 (2015)

    Google Scholar 

  10. S. Karthikeyan, V. Gupta, R. Boopathy, A. Titus, G. Sekaran, A new approach for the degradation of high concentration of aromatic amine by heterocatalytic Fenton oxidation: kinetic and spectroscopic studies. J. Mol. Liq. 173, 153–163 (2012)

    Article  CAS  Google Scholar 

  11. H. Eccles, Treatment of metal-contaminated wastes: why select a biological process? Trends Biotechnol. 17(12), 462–465 (1999)

    Article  CAS  Google Scholar 

  12. S. Dhiman, B. Gupta, Partition studies on cobalt and recycling of valuable metals from waste Li-ion batteries via solvent extraction and chemical precipitation. J. Clean. Prod. 225, 820–832 (2019)

    Article  CAS  Google Scholar 

  13. F. Ge, M.-M. Li, H. Ye, B.-X. Zhao, Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. J. Hazard. Mater. 211, 366–372 (2012)

    Article  Google Scholar 

  14. I.B. Rae, S. Pap, D. Svobodova, S.W. Gibb, Comparison of sustainable biosorbents and ion-exchange resins to remove Sr2+ from simulant nuclear wastewater: batch, dynamic and mechanism studies. Sci. Total Environ. 650, 2411–2422 (2019)

    Article  CAS  Google Scholar 

  15. M. Ruthiraan, N. Mubarak, E. Abdullah, M. Khalid, S. Nizamuddin, R. Walvekar, R.R. Karri, An overview of magnetic material: preparation and adsorption removal of heavy metals from wastewater. Magn. Nanostruct. 131–159 (2019)

  16. Y.-J. Shih, S.-K. Chien, S.-R. Jhang, Y.-C. Lin, Chemical leaching, precipitation and solvent extraction for sequential separation of valuable metals in cathode material of spent lithium ion batteries. J. Taiwan Inst. Chem. Eng. 100, 151–159 (2019)

    Article  CAS  Google Scholar 

  17. B.S. Thaçi, S.T. Gashi, Reverse osmosis removal of heavy metals from wastewater effluents using biowaste materials pretreatment. Pol. J. Environ. Stud. 28(1), 337–341 (2019)

    Article  Google Scholar 

  18. K. Yin, Q. Wang, M. Lv, L. Chen, Microorganism remediation strategies towards heavy metals. Chem. Eng. J. 360, 1553–1563 (2019)

    Article  CAS  Google Scholar 

  19. N. Siti, H. Mohd, L.K. Md, I. Shamsul, Adsorption process of heavy metals by low-cost adsorbent: a review. World Appl. Sci. J. 28(11), 1518–1530 (2013)

    Google Scholar 

  20. M. Arshadi, M. Abdolmaleki, H. Eskandarloo, M. Azizi, A. Abbaspourrad, Synthesis of highly monodispersed, stable, and spherical NZVI of 20–30 nm on filter paper for the removal of phosphate from wastewater: batch and column study. ACS Sustain. Chem. Eng. 6(9), 11662–11676 (2018)

    Article  CAS  Google Scholar 

  21. L. Eskandarian, E. Pajootan, M. Arami, Novel super adsorbent molecules, carbon nanotubes modified by dendrimer miniature structure, for the removal of trace organic dyes. Ind. Eng. Chem. Res. 53(38), 14841–14853 (2014)

    Article  CAS  Google Scholar 

  22. M.O. Ojemaye, O.O. Okoh, A.I. Okoh, Adsorption of Cu2+ from aqueous solution by a novel material; azomethine functionalized magnetic nanoparticles. Sep. Purif. Technol. 183, 204–215 (2017)

    Article  CAS  Google Scholar 

  23. R. Qu, C. Sun, F. Ma, Z. Cui, Y. Zhang, X. Sun, C. Ji, C. Wang, P. Yin, Adsorption kinetics and equilibrium of copper from ethanol fuel on silica-gel functionalized with amino-terminated dendrimer-like polyamidoamine polymers. Fuel 92(1), 204–210 (2012)

    Article  CAS  Google Scholar 

  24. M. Sajid, M.K. Nazal, N. Baig, A.M. Osman, Removal of heavy metals and organic pollutants from water using dendritic polymers based adsorbents: a critical review. Sep. Purif. Technol. 191, 400–423 (2018)

    Article  CAS  Google Scholar 

  25. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review. J. Environ. Manag. 92(3), 407–418 (2011)

    Article  CAS  Google Scholar 

  26. J.R. Siqueira Jr., M.H. Abouzar, A. Poghossian, V. Zucolotto, O.N. Oliveira Jr., M.J. Schöning, Penicillin biosensor based on a capacitive field-effect structure functionalized with a dendrimer/carbon nanotube multilayer. Biosens. Bioelectron. 25(2), 497–501 (2009)

    Article  CAS  Google Scholar 

  27. S. Svenson, D.A. Tomalia, Dendrimers in biomedical applications-reflections on the field. Adv. Drug Deliv. Rev. 64, 102–115 (2012)

    Article  Google Scholar 

  28. Y. Xu, D. Zhao, Removal of lead from contaminated soils using poly (amidoamine) dendrimers. Ind. Eng. Chem. Res. 45(5), 1758–1765 (2006)

    Article  CAS  Google Scholar 

  29. S. Shylesh, V. Schünemann, W.R. Thiel, Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 49(20), 3428–3459 (2010)

    Article  CAS  Google Scholar 

  30. K. Hedayati, M. Goodarzi, M. Kord, Green and facile synthesis of Fe3O4-PbS magnetic nanocomposites applicable for the degradation of toxic organic dyes. Main Group Met. Chem. 39(5–6), 183–194 (2016)

    CAS  Google Scholar 

  31. K. Hedayati, M. Kord, M. Goodarzi, D. Ghanbari, S. Gharigh, Photo-catalyst and magnetic nanocomposites: hydrothermal preparation of core–shell Fe3O4@PbS for photo-degradation of toxic dyes. J. Mater. Sci. 28(2), 1577–1589 (2017)

    CAS  Google Scholar 

  32. C.-H. Yen, H.-L. Lien, J.-S. Chung, H.-D. Yeh, Adsorption of precious metals in water by dendrimer modified magnetic nanoparticles. J. Hazard. Mater. 322, 215–222 (2017)

    Article  CAS  Google Scholar 

  33. H.-R. Kim, J.-W. Jang, J.-W. Park, Carboxymethyl chitosan-modified magnetic-cored dendrimer as an amphoteric adsorbent. J. Hazard. Mater. 317, 608–616 (2016)

    Article  CAS  Google Scholar 

  34. K.-J. Kim, J.-W. Park, Stability and reusability of amine-functionalized magnetic-cored dendrimer for heavy metal adsorption. J. Mater. Sci. 52(2), 843–857 (2017)

    Article  CAS  Google Scholar 

  35. J. Zhao, Y. Niu, B. Ren, H. Chen, S. Zhang, J. Jin, Y. Zhang, Synthesis of Schiff base functionalized superparamagnetic Fe3O4 composites for effective removal of Pb (II) and Cd (II) from aqueous solution. Chem. Eng. J. 347, 574–584 (2018)

    Article  CAS  Google Scholar 

  36. J.-H. Lin, Z.-H. Wu, W.-L. Tseng, Extraction of environmental pollutants using magnetic nanomaterials. Anal. Methods 2(12), 1874–1879 (2010)

    Article  CAS  Google Scholar 

  37. N. Parham, H.A. Panahi, A. Feizbakhsh, E. Moniri, Synthesis of high generation thermo-sensitive dendrimers for extraction of rivaroxaban from human fluid and pharmaceutic samples. J. Chromatogr. A 1545, 12–21 (2018)

    Article  CAS  Google Scholar 

  38. L. Sun, C. Zhang, L. Chen, J. Liu, H. Jin, H. Xu, L. Ding, Preparation of alumina-coated magnetite nanoparticle for extraction of trimethoprim from environmental water samples based on mixed hemimicelles solid-phase extraction. Anal. Chim. Acta 638(2), 162–168 (2009)

    Article  CAS  Google Scholar 

  39. X. Zhang, H. Niu, Y. Pan, Y. Shi, Y. Cai, Chitosan-coated octadecyl-functionalized magnetite nanoparticles: preparation and application in extraction of trace pollutants from environmental water samples. Anal. Chem. 82(6), 2363–2371 (2010)

    Article  CAS  Google Scholar 

  40. A. Maleki, Fe3O4/SiO2 nanoparticles: an efficient and magnetically recoverable nanocatalyst for the one-pot multicomponent synthesis of diazepines. Tetrahedron 68(38), 7827–7833 (2012)

    Article  CAS  Google Scholar 

  41. G.H. Mirzabe, A.R. Keshtkar, Application of response surface methodology for thorium adsorption on PVA/Fe3O4/SiO2/APTES nanohybrid adsorbent. J. Ind. Eng. Chem. 26, 277–285 (2015)

    Article  CAS  Google Scholar 

  42. Q.M. Kainz, O. Reiser, Polymer-and dendrimer-coated magnetic nanoparticles as versatile supports for catalysts, scavengers, and reagents. Acc. Chem. Res. 47(2), 667–677 (2014)

    Article  CAS  Google Scholar 

  43. E. Khalili, N. Ahadi, M.A. Bodaghifard, MNPs-TBAN as a novel basic nanostructure and efficient promoter for the synthesis of pyranopyrimidinones. J. Org. Chem. Res. 6(2), 272–285 (2020)

    Google Scholar 

  44. N. Ahadi, A. Mobinikhaledi, M.A. Bodaghifard, One-pot synthesis of 1, 4-dihydropyridines and N-arylquinolines in the presence of copper complex stabilized on MnFe2O4 (MFO) as a novel organic–inorganic hybrid material and magnetically retrievable catalyst. Appl. Organomet. Chem. 34(10), e5822 (2020)

    Article  CAS  Google Scholar 

  45. Q. Zhoua, Y. Wu, Y. Sun, X. Sheng, Y. Tong, J. Guo, B. Zhou, J. Zhao, Magnetic polyamidoamine dendrimers for magnetic separation and sensitive determination of organochlorine pesticides from water samples by high-performance liquid chromatography. J. Environ. Sci. 102, 64–73 (2021)

    Article  Google Scholar 

  46. S. Asadbegi, M.A. Bodaghifard, E. Alimohammadi, R. Ahangarani-Farahani, Immobilization of palladium on modified nanoparticles and its catalytic properties on Mizoroki-Heck reaction. ChemistrySelect 3(46), 13297–13302 (2018)

    Article  CAS  Google Scholar 

  47. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Cryst. 11, 102 (1978)

    Article  CAS  Google Scholar 

  48. V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Mater. Charact. 85, 111–123 (2013)

    Article  CAS  Google Scholar 

  49. A. Zarei, S. Saedi, Synthesis and application of Fe3O4@ SiO2@ carboxyl-terminated PAMAM dendrimer nanocomposite for heavy metal removal. J. Inorg. Organomet. Polym Mater. 28(6), 2835–2843 (2018)

    Article  CAS  Google Scholar 

  50. K. Chen, J. He, Y. Li, X. Cai, K. Zhang, T. Liu, Y. Hu, D. Lin, L. Kong, J. Liu, Removal of cadmium and lead ions from water by sulfonated magnetic nanoparticle adsorbents. J. Colloid Interface Sci. 494, 307–316 (2017)

    Article  CAS  Google Scholar 

  51. X. Guo, J. Wang, Comparison of linearization methods for modeling the Langmuir adsorption isotherm. J. Mol. Liq. 296, 111850 (2019)

    Article  CAS  Google Scholar 

  52. Y. Zou, X. Wang, Y. Ai, Y. Liu, Y. Ji, H. Wang, T. Hayat, A. Alsaedi, W. Hu, X. Wang, β-Cyclodextrin modified graphitic carbon nitride for the removal of pollutants from aqueous solution: experimental and theoretical calculation study. J. Mater. Chem. A 4(37), 14170–14179 (2016)

    Article  CAS  Google Scholar 

  53. J.-H. Deng, X.-R. Zhang, G.-M. Zeng, J.-L. Gong, Q.-Y. Niu, J. Liang, Simultaneous removal of Cd (II) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent. Chem. Eng. J. 226, 189–200 (2013)

    Article  CAS  Google Scholar 

  54. X. Li, S. Wang, Y. Liu, L. Jiang, B. Song, M. Li, G. Zeng, X. Tan, X. Cai, Y. Ding, Adsorption of Cu (II), Pb (II), and Cd (II) ions from acidic aqueous solutions by diethylenetriaminepentaacetic acid-modified magnetic graphene oxide. J. Chem. Eng. Data 62(1), 407–416 (2017)

    Article  CAS  Google Scholar 

  55. C. Duan, N. Zhao, X. Yu, X. Zhang, J. Xu, Chemically modified kapok fiber for fast adsorption of Pb2+, Cd2+, Cu2+ from aqueous solution. Cellulose 20(2), 849–860 (2013)

    Article  CAS  Google Scholar 

  56. Q. Zhang, M. He, B. Chen, B. Hu, Magnetic mesoporous carbons derived from in situ MgO template formation for fast removal of heavy metal ions. ACS Omega 3(4), 3752–3759 (2018)

    Article  CAS  Google Scholar 

  57. L. Fan, C. Luo, M. Sun, X. Li, H. Qiu, Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. Colloids Surf. B. 103, 523–529 (2013)

    Article  CAS  Google Scholar 

  58. J. He, Y. Li, C. Wang, K. Zhang, D. Lin, L. Kong, J. Liu, Rapid adsorption of Pb, Cu and Cd from aqueous solutions by β-cyclodextrin polymers. Appl. Surf. Sci. 426, 29–39 (2017)

    Article  CAS  Google Scholar 

  59. J. Wang, X. Guo, Adsorption kinetic models: physical meanings, applications, and solving methods. J. Hazard. Mater. 390, 122156 (2020)

    Article  CAS  Google Scholar 

  60. X. Guo, J. Wang, A general kinetic model for adsorption: theoretical analysis and modeling. J. Mol. Liq. 288, 111100 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

We gratefully acknowledge the financial support of this work by the research council of Arak University.

Author information

Authors and Affiliations

Authors

Contributions

RA and MAB designed the experiments and contributed to interpreting the results. RA has done the experiments and synthesis of adsorbent and also prepared the primary draft of the manuscript. MAB supervised the project and revised the final version of the manuscript. All authors approved the final version of the manuscript to be published.

Corresponding author

Correspondence to Mohammad Ali Bodaghifard.

Ethics declarations

Competing interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

Not applicable.

Consent to participant

The authors voluntarily agree to participate in this research study.

Consent to publication

The authors affirmed that the persons named above are the authors of this work, that neither this Work nor portions thereof have been published elsewhere and that this Work will not be submitted elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahangarani-Farahani, R., Bodaghifard, M.A. A polyethanolamine nanodendrimer as a magnetic hybrid material for fast adsorption of heavy metal contaminants. J Mater Sci: Mater Electron 33, 25674–25686 (2022). https://doi.org/10.1007/s10854-022-09263-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09263-w

Navigation