Skip to main content
Log in

Study of Europium substituted spinel ferrites for microwave devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The sol–gel technique is used to synthesize the barium-based ferrites with chemical composition of BaEuxFe2-xO4 (x = 0.00, 0.025, 0.050, 0.075, 0.10). The microstructural ability to conduct and magnetic characteristics are investigated using different techniques including X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), scanning electron microscopy (SEM) as well as vibrating sample magnetometer. According to XRD measurements, the crystallite size of synthesized europium (Eu3+) substituted sample of spinel ferrite is 42 nm to 92 nm. The FTIR analysis revealed that there are two bands at 400 cm−1 and 574 cm−1, and the two-probe point approach is utilized to evaluate the electrical characteristics. The Curie point also begins to reduce by the addition of Eu3+ ions, and it reaches its lowest possible value at the maximum europium concentration. The magnetic measurements exhibited that Eu-Barium ferrites have the greatest magnetic coercivity (Hc) and relatively large loop area. The dielectric constant and dielectric loss decreased with the substitution of Europium concentration. The sample (x = 0.10), which possessed a high value of dc resistivity and low dielectric loss, might be ideal for microwave devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no data sets were generated during the present study.

References

  1. M.T. Farid, I. Ahmad, M. Kanwal, G. Murtaza, I. Ali, M.N. Ashiq, S.A. Khan, Synthesis, electrical and magnetic properties of Pr-substituted Mn ferrites for high-frequency applications. J. Electron. Mater. 46, 1826–1835 (2017)

    Article  CAS  Google Scholar 

  2. M. Hashim, K.S. Alimuddin, S.E. Shirsath, R.K. Kotnala, J. Shah, R. Kumar, Synthesis and characterizations of Ni 2 + substituted cobalt ferrite nanoparticles. Mater. Chem. Phys. 139, 364–373 (2013)

    Article  CAS  Google Scholar 

  3. M. Salaheldeen, A. Nafady, A.M. Abu-Dief, R. Díaz Crespo, M.P. Fernández-García, J.P. Andrés, R. LópezAntón, J.A. Blanco, P. Álvarez-Alonso, Enhancement of exchange bias and perpendicular magnetic anisotropy in CoO/Co multilayer thin films by tuning the alumina template nanohole size. Nanomaterials 12(15), 2544 (2022)

    Article  CAS  Google Scholar 

  4. H.F. Cheng, Modeling of electrical response for semiconducting ferrite. J. Appl. Phys. 56, 1831 (1984)

    Article  CAS  Google Scholar 

  5. S.C. Byeon, K.S. Hong, J.G. Park, W.N. Kang, Origin of the increase in resistivity of manganese–zinc ferrite polycrystals with oxygen partial pressure. J. Appl. Phys. 81(12), 7835–7841 (1997)

    Article  CAS  Google Scholar 

  6. W.S. Mohamed, N.M.A. Hadia, M. Alzaid, A.M. Abu-Dief, Impact of Cu2+ cations substitution on structural, morphological, optical and magnetic properties of Co1-xCuxFe2O4 nanoparticles synthesized by a facile hydrothermal approach. Solid. State. Sci. 125, 106841 (2022)

    Article  CAS  Google Scholar 

  7. M. Salaheldeen, A.M. Abu-Dief, L. Martínez-Goyeneche, S.O. Alzahrani, F. Alkhatib, P. Álvarez-Alonso, J.Á. Blanco, Dependence of the magnetization process on the thickness of Fe70Pd30 nanostructured thin film. Materials. 13(24), 5788 (2020)

    Article  CAS  Google Scholar 

  8. C.V. Ramana, Y.D. Kolekar, K. Kamala Bharathi, B. Sinha, K. Ghosh, Correlation between structural, magnetic, and dielectric properties of manganese substituted cobalt ferrite. J. Appl. Phys. 114, 183907 (2013)

    Article  CAS  Google Scholar 

  9. R. Pandit, K.K. Sharma, P.P. Kaur, R. Kumar, Cation distribution controlled dielectric, electrical and magnetic behavior of In 3 + substituted cobalt ferrites synthesized via solid-state reaction technique. Mater. Chem. Phys. 148, 988–999 (2014)

    Article  CAS  Google Scholar 

  10. Z. Karimi, Y.HGh. . Mohammad ifar, . Shokrollahi, ShKhamenehAsl, . YousefiL. Karimi, Magnetic and structural properties of nano sized Dy-doped cobalt ferritesynthesized by co-precipitation. J. Magn. Magn. Mater. 361, 150–156 (2014)

    Article  CAS  Google Scholar 

  11. A.M. Abu-Dief, A.A.H. Abdel-Mawgoud, Functionalization of magnetic nanoparticles for drug delivery. SF J Nanochem Nanotechnol. 1(1), 1005 (2018)

    Google Scholar 

  12. E.M.M. Ibrahim, L.H. Abdel-Rahman, A.M. Abu-Dief, A. Elshafaie, S.K. Hamdan, A.M. Ahmed, Electric, thermoelectric and magnetic characterization of γ-Fe2O3 and Co3O4 nanoparticles synthesized by facile thermal decomposition of metal-Schiff base complexes. Mater. Res. Bull. 99, 103–108 (2018)

    Article  CAS  Google Scholar 

  13. P. Moreau, F. Anizon, M. Sancelme, M. Prudhomme, C. Bailly, D.le Severe, Jean. Franc¸oisRiou, D. Fabbro, T. Meyer, and A. Aubertin, Syntheses and biological activities of rebeccamycin analogues. introduction of a halogenoacetyl substituent. J. Med. Chem. 42, 584–592 (1999)

    Article  CAS  Google Scholar 

  14. E.M.M. Ibrahim, A.M. Abu-Dief, A. Elshafaie, A.M. Ahmed, Electrical, thermoelectrical and magnetic properties of approximately 20-nm Ni-Co-O nanoparticles and investigation of their conduction phenomena. Mater. Chem. Phys. 192, 41–47 (2017)

    Article  CAS  Google Scholar 

  15. H.M.T. Farid, I. Ahmad, I. Ali, S.M. Ramay, A. Mahmood, Study of spinel ferrites with addition of small amount of metallic elements. J. Electroceramics. 42, 57–66 (2019)

    Article  CAS  Google Scholar 

  16. E.M.M. Ibrahim, L.H. Abdel-Rahman, A.M. Abu-Dief, A. Elshafaie, S.K. Hamdan, A.M. Ahmed, The synthesis of CuO and NiO nanoparticles by facile thermal decomposition of metal-Schiff base complexes and an examination of their electric, thermoelectric and magnetic Properties. Mater. Res. Bull. 107, 492–497 (2018)

    Article  CAS  Google Scholar 

  17. L.H. Abdel Rahman, A.M. Abu-Dief, R.M. El-Khatib, S.M. Abdel-Fatah, A.M. Adam, E.M.M. Ibrahim, Sonochemical synthesis, structural inspection and semiconductor behavior of three new nano sized Cu (II), Co (II) and Ni (II) chelates based on tri-dentate NOO imine ligand as precursors for metal oxides. Appl. Organomet. Chem. 32(3), e4174 (2018)

    Article  CAS  Google Scholar 

  18. H.G. Belegers, J.L. Snoek, Gyromagnetic phenomena occurring withferrites. Philips Tech. Rev. 11, 313–340 (1950)

    Google Scholar 

  19. A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties and Applications (Chapman & Hall, London, 1990), p.247

    Google Scholar 

  20. V.R.K. Murthy, S. Sundaram, B. Viswanathan, Microwave Materials (Narosa Publishing House, New Delhi, 1994), p.143

    Book  Google Scholar 

  21. Y. Bai, J. Zhou, Z. Gui, L. Li, J. Magn. Magn. Mater. 278, 208 (2004)

    Article  CAS  Google Scholar 

  22. M.G. Chourashiya, J.Y. Patil, S.H. Pawar, L.D. Jadhav, Mater. Chem. Phys. 109, 39 (2008)

    Article  CAS  Google Scholar 

  23. Y.Q. Li, Y. Huang, S.H. Qi, F.F. Niu, L. Niu, Preparation, andmagnetic and electromagnetic properties of La-dopedstrontium ferrite films. J. Magn. Magn. Mater. 323, 2224–2232 (2011)

    Article  CAS  Google Scholar 

  24. S. Shirsath, S. Jadhav, B. Toksha, S.M. Patange, K.M. Jadhav, Influence of Ce4+ions on the structural and magneticproperties of NiFe2O4. Appl. Phys. 110, 13914 (2011)

    Article  CAS  Google Scholar 

  25. T.J. Shinde, A.B. Gadkari, P.N. Vasambekar, Structural anddielectric properties of nanocrystalline Nd3+substitutednickel-zinc ferrites. J. Mater. Sci. Mater. Electron. 23, 697–705 (2012)

    Article  CAS  Google Scholar 

  26. S. Joshi, M. Kumar, H. Pandey, M. Singh, P. Pal, Structural, magnetic and dielectric properties of Gd3+substitutedNiFe2O4nanoparticles. J. Alloys. Compd. 768, 287–297 (2018)

    Article  CAS  Google Scholar 

  27. A.A. Kadam, S.S. Shinde, S.P. Yadav, P.S. Patil, K.Y. Rajpure, Structural, morphological, electrical and magnetic propertiesof Dy doped Ni–Co substitutional spinel ferrite. J. Magn. MagnMater. 329, 59–64 (2013)

    Article  CAS  Google Scholar 

  28. R.D.K. Misra, A. Kale, R.S. Srivastava, O.N. Senkov, Synthesis ofnanocrystalline nickel and zinc ferrites by microemulsiontechnique. Mater. Sci. Technol. 19, 826–830 (2003)

    Article  CAS  Google Scholar 

  29. S. Balaji, R. KalaiSelvan, L. John Berchmans, S. Angappan, K. Subramanian, C.O. Augustin, Combustion synthesis andcharacterization of Sn4+substituted nanocrystalline NiFe2O4. Mater. Sci. Eng. B. 119, 119–124 (2005)

    Article  CAS  Google Scholar 

  30. M. Stoia, P. Barvinschi, L.B. Tudoran, M. Barbu, M. Stefanescu, Synthesis of nanocrystalline nickel ferrite by thermaldecomposition of organic precursors. J. Therm. Anal. Calorim. 108, 1033–1039 (2012)

    Article  CAS  Google Scholar 

  31. K. Thanigai Arul, E. Manikandan, P.P. Murmu, J. Kennedy, M. Henini, Enhanced magnetic properties ofpolymer-magnetic nanostructures synthesized byultrasonication. J. Alloys. Compd. 720, 395–400 (2017)

    Article  CAS  Google Scholar 

  32. A. Kale, S. Gubbala, R.D.K. Misra, Magnetic behavior ofnanocrystalline nickel ferrite synthesized by the reversemicelle technique. J. Magn. Magn. Mater. 277, 350–358 (2004)

    Article  CAS  Google Scholar 

  33. H. Wu, R. Zhang, X. Liu, D. Lin, W. Pan, Electrospinning of Fe Co, and Ni nanofibers: synthesis, assembly, and magneticproperties. Chem. Mater. 19, 3506–3511 (2007)

    Article  CAS  Google Scholar 

  34. L. Yu, J. Zhang, Y. Liu, C. Jing, S. Cao, Fabrication, structure andmagnetic properties of nanocrystalline NiZn-ferrite byhigh-energy milling. J Magn Magn Mater 288, 54–59 (2005)

    Article  CAS  Google Scholar 

  35. H. Nathani, S. Gubbala, R.D.K. Misra, Magnetic behavior ofnickel ferrite–polyethylene nanocomposites synthesized bymechanical milling process. Mater. Sci. Eng. B. 111, 95–100 (2004)

    Article  CAS  Google Scholar 

  36. D.-H. Chen, X.-R. He, Synthesis of nickel ferrite nanoparticlesby sol-gel method. Mater. Res. Bull. 36, 1369–1377 (2001)

    Article  CAS  Google Scholar 

  37. M.A. Almessiere, Y. Slimani, M. Sertkol, M. Nawaz, A. Sadaqat, A. Baykal et al., Effect of Nb3+substitution on the structural, magnetic, and optical properties of Co0.5Ni0.5Fe2O4nanoparticles. Nanomaterials 9, 430 (2019)

    Article  CAS  Google Scholar 

  38. K. Kamala Bharathi, J. AroutChelvane, G. Markandeyulu, Magnetoelectric properties of Gd and Nd-doped nickelferrite. J. Magn. Magn. Mater. 321, 3677–3680 (2009)

    Article  CAS  Google Scholar 

  39. M.N. Islam, A.K.M.A. Hossain, Enhancement of Néeltemperature and electrical resistivity of Mn-Ni-Zn ferrites byGd3+substitution. J. Mater. Res. Technol. 8, 208–216 (2019)

    Article  CAS  Google Scholar 

  40. A. Zubair, Z. Ahmad, A. Mahmood, W.-C. Cheong, I. Ali, M.A. Khan, A.H. Chughtai, M.N. Ashiq, Structural, morphological and magnetic properties of Eu-doped CoFe2O4 nano-ferrites. Results in physics 7, 3203–3208 (2017)

    Article  Google Scholar 

  41. S.H. Mahmood, A.M. Awadallah, I. Bsoul, Y. Maswadeh, Structural and magnetic properties of vanadium substituted SrM and Europium substituted BaM hexaferrites. Materials Research Foundations (2018). https://doi.org/10.21741/9781945291692-4

    Article  Google Scholar 

  42. M.A. Almessiere, Y. Slimani, A. DemirKorkmaz, A. Baykal, H. Albetran, T.A. Saleh, M. Sertkol, I. Ercan, A study on the spectral, microstructural, and magnetic properties of Eu–Nd double-substituted Ba0. 5Sr0. 5Fe12O19 hexaferrites synthesized by an ultrasonic-assisted approach. Ultrason. Sonochem. 62(2020), 104847 (2020)

    Article  CAS  Google Scholar 

  43. R.H. Kadam, R.B. Borade, M.L. Mane, D.R. Mane, K.M. Batoo, S.E. Shirsath, Structural, mechanical, dielectric properties and magnetic interactions in Dy 3+-substituted Co–Cu–Zn nanoferrites. RSC Adv. 10(47), 27911–27922 (2020)

    Article  CAS  Google Scholar 

  44. R. Ramzan, M. Tariq, M.N. Ashiq, H. Albalawi, M.H. Imtiaz Ahmad, S.R. Alhossainy, Ejaz, et al., Effect of yttrium ion on electrical and magnetic properties of barium based spinel ferrites. J. Mater. Res. Technol. 12, 1104–1112 (2021)

    Article  CAS  Google Scholar 

  45. H. Sözeri, H. Deligöz, H. Kavas, A. Baykal, Magnetic, dielectric and microwave properties of M-Ti substituted barium hexaferrites (M= Mn2+, Co2+, Cu2+, Ni2+, Zn2+). Ceram. Int. 40(6), 8645–8657 (2014)

    Article  CAS  Google Scholar 

  46. A. Hakeem, T. Alshahrani, M.H. Ghulam Muhammad, A.L. Alhossainy, A.R. Khan, I. Ali et al., Magnetic, dielectric and structural properties of spinel ferrites synthesized by sol-gel method. J. Mater. Res. Technol. 11, 158–169 (2021)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SA Worked in the laboratory, i.e., experimental work done, and wrote the manuscript, development or design of methodology, and creation of models. MBT Revised, editing the manuscript. NA Supervision.

Corresponding author

Correspondence to Salma Aman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aman, S., Tahir, M.B. & Ahmad, N. Study of Europium substituted spinel ferrites for microwave devices. J Mater Sci: Mater Electron 33, 21995–22006 (2022). https://doi.org/10.1007/s10854-022-08990-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08990-4

Navigation