Skip to main content
Log in

Judd–Ofelt analysis and photoluminescence properties of europium-activated Y8−xSr2(SiO4)6O2 oxyapatite phosphors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, the solution combustion reaction method was employed to synthesize the Y8−xSr2(SiO4)6O2:xEu (YSSO:Eu) oxyapatite phosphors where x = 0.10, 0.15, 0.20, 0.25, and 0.30 mol%. The crystal phase study was done using X-Ray Diffraction analysis which confirmed apatite phase formation with hexagonal crystal symmetry and the average crystallite size was found to be 9.35 nm. The FTIR (Fourier Transform Infrared Spectroscopy) spectra were well evident for the bond formations and the presence of functional groups in the prepared sample. Using UV–Visible spectroscopy, band gap values were calculated, and with increasing doping concentrations, the band gap values decreased. The photoluminescence spectral analysis showed peaks at 582 nm, 587 nm, 593 nm, 611 nm, 624 nm, and 675 nm due to transitions of Eu3+ ions from 5D0 (excited state) to 7Fj (j = 0, 1, 2, 3) (ground state), respectively. The Y8−xSr2(SiO4)6O2:0.25Eu oxyapatite phosphor showed the highest intensity peak. The critical distance of energy transfer was calculated to be 4.17 Å implying exchange interaction in the sample. The Judd–Ofelt analysis of synthesized phosphors gave different optical europium transition parameters. The asymmetric environment around the ligand was indicated by the trend, Ω2 > Ω4 followed by J–O parameters. The values of fluorescence branching ratios were found to be more than 0.5 for all doping concentration and the highest calculated lifetime was found to be 9.787 ms for Y8−xSr2(SiO4)6O2:xEu (x = 0.25 mol%) phosphor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All relevant data generated or analyzed are included in this article.

References

  1. C.L. Owens, G.R. Nash et al., Apatite enrichment by rare earth elements: A review of the effects of surface properties. Adv. Colloid Interface Sci. 265, 14–28 (2019). https://doi.org/10.1016/j.cis.2019.01.004

    Article  CAS  Google Scholar 

  2. P. Ptáček, T. Opravil et al., The field of solid solutions in ternary system of synthetic apatite-type alkaline earth element-yttrium-silicate oxybritholite phases of the composition: AEEδY10δ[SiO4]6O30.5δ, where AEE=Ca, Sr and Ba. Ceram. Int. 42, 6154–6167 (2016). https://doi.org/10.1016/j.ceramint.2016.01.003

    Article  CAS  Google Scholar 

  3. S. Yiqiang, D. Zhili et al., Synthesis and crystal structure characterization of silicate apatite Sr2Y8(SiO4)6O2. J. Am. Ceram. Soc. 93, 1176–1182 (2009). https://doi.org/10.1111/j.1551-2916.2009.03563.x

    Article  CAS  Google Scholar 

  4. K.B. Steinbru, G.W. Roland et al., Laser properties of Nd3+ and Ho3+ doped crystals with apatite structure. Appl. Opt. 11, 999–1012 (1972)

    Article  Google Scholar 

  5. M. He, H. Shi et al., Immobilization of Pb and Cd in contaminated soil using nano-crystallite hydroxyapatite. Procedia Environ. Sci. 18, 657–665 (2013). https://doi.org/10.1016/j.proenv.2013.04.090

    Article  CAS  Google Scholar 

  6. C. Rey, C. Combes et al., Physico-chemical properties of nanocrystalline apatites: Implications for biominerals and biomaterials. Mater. Sci. Eng. C 27, 198–205 (2007). https://doi.org/10.1016/j.msec.2006.05.015

    Article  CAS  Google Scholar 

  7. Yu. Ruijin, Na. Xue et al., Photoluminescence characteristics of high thermal stable fluorosilicate apatite Ba2Y3(SiO4)3F: Sm3+ orange-red emitting phosphor. Ceram. Int. 41, 6030–6036 (2015). https://doi.org/10.1016/j.ceramint.2015.01.046

    Article  CAS  Google Scholar 

  8. H. Dahiya, M. Dalal et al., Spectroscopic characteristics of Eu3+-activated Ca9Y(PO4)7 nanophosphors in Judd-Ofelt framework. Solid State Sci. 108, 106341 (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106341

    Article  CAS  Google Scholar 

  9. S. Singh, S.P. Khatkar et al., Synthesis and optical properties of Gd2(12x) O3: 2xEu3+ nanophosphors via tartaric assisted sol–gel route. J. Sol.-Gel Sci. Technol. 74, 24–31 (2015). https://doi.org/10.1007/s10971-014-3566-3

    Article  CAS  Google Scholar 

  10. K. Binnemans, Interpretation of europium (III) spectra. Coord. Chem. Rev. 295, 1–45 (2015). https://doi.org/10.1016/j.ccr.2015.02.015

    Article  CAS  Google Scholar 

  11. M. Pokhrel, M. Alcoutlabi et al., Optical and X-ray induced luminescence from Eu3+ doped La2Zr2O7 nanoparticles. J. Alloys Compd. 693, 719–729 (2017). https://doi.org/10.1016/j.jallcom.2016.09.218

    Article  CAS  Google Scholar 

  12. Y.Q. Shen, Z.L. Dong et al., Photoluminescence properties and TEM characterization of europium doped silicate oxyapatite Sr2Y8(SiO4)6O2. Microsc. Microanal. Microstruct. 18, 1904 (2012). https://doi.org/10.1017/S1431927612011373

    Article  Google Scholar 

  13. Y. Shen, R. Chen et al., Study of the cation distributions in Eu doped Sr2Y8(SiO4)6O2 by X-ray diffraction and photoluminescent spectra. J. Solid State Chem. 183, 3093–3099 (2010). https://doi.org/10.1016/j.jssc.2010.10.025

    Article  CAS  Google Scholar 

  14. Yu. Chunfeng, X. Zhang et al., Determination of Judd-Ofelt parameters for Eu3+-doped alkali borate glasses. Mater. Res. Bull. 120, 110590 (2019). https://doi.org/10.1016/j.materresbull.2019.110590

    Article  CAS  Google Scholar 

  15. B.R. Judd, Optical absorption intensities of rare-earth ions. Phys. Rev. Lett. 127, 750–761 (1962). https://doi.org/10.1103/PhysRev.127.750

    Article  CAS  Google Scholar 

  16. G.S. Ofelt, Intensities of crystal spectra of rare-earth ions. J. Chem. Phys. 37, 511 (1962). https://doi.org/10.1063/1.1701366

    Article  CAS  Google Scholar 

  17. S. Qi, Y. Huang et al., Versatile luminescence of Eu2+,3+ activated fluorosilicate apatites M2Y3[SiO4]3F (M = Sr, Ba) suitable for white light emitting diodes. Opt. Mater. Express 4, 396–402 (2014). https://doi.org/10.1364/OME.4.000396

    Article  CAS  Google Scholar 

  18. Y. Yang, S. Das et al., Tunable photoluminescence properties and energy transfer in oxyapatite-based Ca2Tb8(SiO4)6:Eu3+ phosphors for UV-LEDs. J. Lumin. 168, 199–206 (2015). https://doi.org/10.1016/j.jlumin.2015.08.009

    Article  CAS  Google Scholar 

  19. J. Sokolnicki, E. Zych et al., Synthesis and spectroscopic investigations of Sr2Y8(SiO4)6O2:Eu2+, Eu3+ phosphor for white LEDs. J. Lumin. 158, 65–69 (2015). https://doi.org/10.1016/j.jlumin.2014.09.033

    Article  CAS  Google Scholar 

  20. S.V. Motloung, F.B. Dejene et al., Effects of Pb2+ ions concentration on the structure and PL intensity of Pb-doped ZnAl2O4 nanocrystals synthesized using sol–gel process. J. Sol.-Gel Sci. Technol. 70, 422–427 (2014). https://doi.org/10.1007/s10971-014-3302-z

    Article  CAS  Google Scholar 

  21. J. Li, Q. Liang et al., Layered structure produced nonconcentration quenching in a novel Eu3+-doped phosphor. ACS Appl. Mater. Interfaces 10, 41479–41486 (2018). https://doi.org/10.1021/acsami.8b13759

    Article  CAS  Google Scholar 

  22. J. Mahapatro, S. Agrawal, Effect of Eu3+ ions on electrical and dielectric properties of barium hexaferrites prepared by solution combustion method. Ceram. Int. 47, 20529–20543 (2021). https://doi.org/10.1016/j.ceramint.2021.04.062

    Article  CAS  Google Scholar 

  23. M. Rianna, T. Sembiring et al., Microstructure and magnetic properties of BaFe12–2xMgxAlxO19 for microwave absorbing materials. Int. J. Appl. Eng. Res. 12, 6586–6590 (2017)

    Google Scholar 

  24. P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen". Nachr. Ges. Wiss. Göttingen 26, 98 (1918)

    Google Scholar 

  25. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Cryst. 11, 102 (1978). https://doi.org/10.1107/s0021889878012844

    Article  CAS  Google Scholar 

  26. R. Srinivasan, R. Yogamalar et al., Structural and optical studies of yttrium oxide nanoparticles synthesized by co-precipitation method. Mater. Res. Bull. 45, 1165–1170 (2010). https://doi.org/10.1016/j.materresbull.2010.05.020

    Article  CAS  Google Scholar 

  27. R. Alimuddin, M. Rafeeq, Synthesis and characterization of strontium oxide nano particle by sol-gel method. Orient. J. Chem. 37, 177–180 (2021). https://doi.org/10.13005/ojc/370124

    Article  CAS  Google Scholar 

  28. G. Apsana, P.P. George et al., Biomimetic synthesis and antibacterial properties of strontium oxide nanoparticles using ocimum sanctum leaf extract. Asian J. Pharm. Clin. Res. 11, 384–389 (2018). https://doi.org/10.22159/ajpcr.2018.v11i3.20858

    Article  CAS  Google Scholar 

  29. B. Shokri, M. Abbasi Firouzjah et al, FTIR analysis of silicon dioxide thin film deposited by Metal organic-based PECVD

  30. N.J. Shivaramu, B.N. Lakshminarasappa et al., Synthesis characterization and luminescence studies of gamma irradiated nanocrystalline yttrium oxide. Spectrochim. Acta A Mol. Biomol. Spectrosc. 154, 220–231 (2016). https://doi.org/10.1016/j.saa.2015.09.019

    Article  CAS  Google Scholar 

  31. N. Sasani, A.H. Khadivi et al., Characterization of rod-like high-purity fluorapatite nanopowders obtained by sol-gel method. J. Ultrafine Grained Nanostruct. Mater. 46, 31–37 (2013)

    Google Scholar 

  32. J. Zhou, R. Lei et al., A new generation of dual-mode optical thermometry based on ZrO2:Eu3+ nanocrystals. Nanophotonics 12, 2347–2358 (2019). https://doi.org/10.1515/nanoph-2019-0359

    Article  CAS  Google Scholar 

  33. K. Park, D.H. Kim et al., Crystal structure and photoluminescence properties of garnet−type as−synthesized and aged Li7La3−xZr2O12: xTb phosphors. Ceram. Int. 46, 10194–10202 (2020). https://doi.org/10.1016/j.ceramint.2020.01.011

    Article  CAS  Google Scholar 

  34. L.K. Bharat, S.R. Dugasani et al., Preparation of Eu3+ ions activated Ca2La8(SiO4)6O2 oxyapatite nanophosphors through two-step surfactant-free method and their optical and electrical properties. Nanotechnology 28, 375601 (2017). https://doi.org/10.1088/1361-6528/aa7dad

    Article  CAS  Google Scholar 

  35. R. Koutavarapu, N. Sita Maha Lakshmi et al., Novel yellow light emission from vanadyl ions-doped calcium-lithium hydroxyapatite nanopowders: structural, optical, and photoluminescence properties. Chem. Pap. 75, 3989–3999 (2021). https://doi.org/10.1007/s11696-021-01632-9

    Article  CAS  Google Scholar 

  36. J. Bierwagen, S. Yoon et al., Thermal and concentration dependent energy transfer of Eu2+ in SrAl2O4. Opt. Mater. Express 6, 793–803 (2016). https://doi.org/10.1364/OME.6.000793

    Article  CAS  Google Scholar 

  37. S.J. Yoon, J.W. Pi, K. Park, Structural and photoluminescence properties of solution combustionprocessed novel ZrO2 doped with Eu3+ and Al3+. Dyes Pigm. 150, 231–240 (2018). https://doi.org/10.1016/j.dyepig.2017.12.012

    Article  CAS  Google Scholar 

  38. K. Park, D.A. Hakeem et al., Improvement of photoluminescence properties of Ce3+ doped CaSrAl2SiO7 phosphors by charge compensation with Li+ and Na+. Ceram. Int. 44, 1929–1934 (2018). https://doi.org/10.1016/j.ceramint.2017.10.135

    Article  CAS  Google Scholar 

  39. G. Annadurai, B. Devakumar et al., Novel Eu3+-activated Ba2Y5B5O17 red-emitting phosphors for white LEDs: high color purity, high quantum efficiency and excellent thermal stability. R. Soc. Chem. 8, 23323 (2018). https://doi.org/10.1039/c8ra03059f

    Article  CAS  Google Scholar 

  40. A. Ćirić, S. Stojadinović et al., JOES: an application software for Judd-Ofelt analysis from Eu3+ emission spectra. J. Lumin. 205, 351–356 (2019). https://doi.org/10.1016/j.jlumin.2018.09.048

    Article  CAS  Google Scholar 

  41. H. Dahiya, M. Dalal et al., Spectroscopic characteristics of Eu3+ activated Ca9Y(PO4)7 nanophosphors in Judd-Ofelt framework. Solid State Sci. 108, 106341 (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106341

    Article  CAS  Google Scholar 

  42. P. Phogat, S.P. Khatkar et al., Crystallographic and Judd-Ofelt Parametric investigation into Ca9Bi(VO4)7: Eu3+ nanophosphor for NUV-WLEDs. J. Lumin. 234, 117984 (2021). https://doi.org/10.1016/j.jlumin.2021.117984

    Article  CAS  Google Scholar 

  43. A. Ćirić, S. Stojadinović et al., An extension of the Judd-Ofelt theory to the field of lanthanide thermometry. J. Lumin. 216, 116749 (2019). https://doi.org/10.1016/j.jlumin.2019.116749

    Article  CAS  Google Scholar 

  44. Q. Chen, B. Miao et al., Enhanced luminescence properties and Judd-Ofelt analysis of novel red emitting Sr2LiScB4O10: Eu3+ phosphors for WLED applications. Opt. Mater. 116, 111093 (2021). https://doi.org/10.1016/j.optmat.2021.111093

    Article  CAS  Google Scholar 

  45. J. Hernández-Andrés, R.L. Le et al., calculating correlated color temperatures across the entire gamut of daylight and skylight chromaticities. Appl. Opt. 38, 5703–5709 (1999). https://doi.org/10.1364/AO.38.005703

    Article  Google Scholar 

  46. P. Du, X. Huang, J.S. Yu, Facile synthesis of bifunctional Eu3+ activated NaBiF4 red emitting nanoparticles for simultaneous white light-emitting diodes and field emission displays. Chem. Eng. J. 337, 91–100 (2018). https://doi.org/10.1016/j.cej.2017.12.063

    Article  CAS  Google Scholar 

  47. M.M. Rodriguez-Garcia, A. Ciric et al., Narrow-band red phosphors of high color purity based on Eu3+-activated apatite-type Gd9.33(SiO4)6O2. J. Mater. Chem. C 9, 7474 (2021). https://doi.org/10.1039/d1tc01330k

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

RG—Methodology, Software, Formal analysis, Investigation, Data Curation and Writing - Original Draft. SA—Conceptualization, Writing - Review & Editing, Visualization and Supervision.

Corresponding author

Correspondence to Sadhana Agrawal.

Ethics declarations

Conflict of interest

There are no conflict of interests to declare.

Competing interest

The authors declare that they have no known competing financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R., Agrawal, S. Judd–Ofelt analysis and photoluminescence properties of europium-activated Y8−xSr2(SiO4)6O2 oxyapatite phosphors. J Mater Sci: Mater Electron 33, 17199–17211 (2022). https://doi.org/10.1007/s10854-022-08597-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08597-9

Navigation