Skip to main content
Log in

Immobilized Mo:TiO2 nanoparticles for humic acid removal in an aqueous medium using solar spectrum

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 30 June 2022

This article has been updated

Abstract

The presence of humic acids and their compounds react with chlorinated residues during water disinfection processes and produce toxic halogenated hydrocarbons, which are carcinogenic. The aim of this research work was to determine photocatalytic degradation of humic acid in an aqueous media using molybdenum-doped titanium dioxide nanoparticles (Mo:TiO2 NPs) under the visible light spectrum. Mo:TiO2 nanomaterials were synthesized through mild hydrothermal techniques and characterized through powder XRD, SEM, DLS, and XPS. The effect of operational parameters including dopant percentage, the dosage of photocatalyst, contact time, and concentration of humic acid was investigated and optimized in the degradation process. Characterization results showed spherically shaped well crystalline-structured nanoparticles that enhance the photocatalytic activities. Among the nanomaterials, 1% Mo:TiO2 nanomaterials showed the highest degradation efficiencies up to 83%; however, the optimum conditions for the highest efficiency obtained for immobilized Mo:TiO2 NPs are different from slurry mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Change history

References

  1. H. Kamani, S. Nasseri, M. Khoobi, R. Nabizadeh Nodehi, A.H. Mahvi, Sonocatalytic degradation of humic acid by N-doped TiO2 nano-particle in aqueous solution. J. Environ. Health Sci. Eng. 14(1), 3 (2016). https://doi.org/10.1186/s40201-016-0242-2

    Article  CAS  Google Scholar 

  2. M. Khodadadi, T.J. Al-Musawi, H. Kamani, M.F. Silva, A.H. Panahi, The practical utility of the synthesis FeNi3@ SiO2@ TiO2 magnetic nanoparticles as an efficient photocatalyst for the humic acid degradation. Chemosphere 239, 124723 (2020)

    Article  CAS  Google Scholar 

  3. Á. de la Rubia, M. Rodríguez, D. Prats, pH, ionic strength and flow velocity effects on the NOM filtration with TiO2/ZrO2 membranes. Sep. Purif. Technol. 52(2), 325–331 (2006)

    Article  CAS  Google Scholar 

  4. E. Bazrafshan, H. Biglari, A.H. Mahvi, Humic acid removal from aqueous environments by electrocoagulation process using iron electrodes. E-J. Chem. 9(4), 2453–2461 (2012)

    Article  CAS  Google Scholar 

  5. A. Matilainen, M. Vepsäläinen, M. Sillanpää, Natural organic matter removal by coagulation during drinking water treatment: a review. Adv. Colloid Interface Sci. 159(2), 189–197 (2010)

    Article  CAS  Google Scholar 

  6. S. Moussavi, M. Ehrampoush, A. Mahvi, S. Rahimi, M. Ahmadian, Efficiency of multi-walled carbon nanotubes in adsorbing humic acid from aqueous solutions. Asian J. Chem. 26(3), 821 (2014)

    Article  CAS  Google Scholar 

  7. H. Rezaei, M.R. Narooie, R. Khosravi, M.J. Mohammadi, H. Sharafi, H. Biglari, Humic acid removal by electrocoagulation process from natural aqueous environments. Int. J. Electrochem. Sci. 13(3), 2379–2389 (2018)

    CAS  Google Scholar 

  8. G. Asgari, A. Ebrahimi, A.S. Mohammadi, G. Ghanizadeh, The investigation of humic acid adsorption from aqueous solutions onto modified pumice with hexadecyl trimethyl ammonium bromide. Int. J. Environ. Health Eng. 2(1), 20 (2013)

    Article  CAS  Google Scholar 

  9. W.-W. Tang, G.-M. Zeng, J.-L. Gong, J. Liang, P. Xu, C. Zhang et al., Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review. Sci. Total Environ. 468, 1014–1027 (2014)

    Article  CAS  Google Scholar 

  10. M.N. Chong, B. Jin, C.W. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review. Water Res. 44(10), 2997–3027 (2010)

    Article  CAS  Google Scholar 

  11. A. Jonidi-Jafari, M. Shirzad-Siboni, J.-K. Yang, M. Naimi-Joubani, M. Farrokhi, Photocatalytic degradation of diazinon with illuminated ZnO–TiO2 composite. J. Taiwan Inst. Chem. Eng. 50, 100–107 (2015)

    Article  CAS  Google Scholar 

  12. R. Andreozzi, V. Caprio, A. Insola, R. Marotta, Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today 53(1), 51–59 (1999)

    Article  CAS  Google Scholar 

  13. M. Shirzad Siboni, M.-T. Samadi, J.-K. Yang, S.-M. Lee, Photocatalytic removal of Cr (VI) and Ni (II) by UV/TiO2: kinetic study. Desalin. Water Treat. 40(1–3), 77–83 (2012)

    Article  CAS  Google Scholar 

  14. M. Shirzad Siboni, M. Samadi, J. Yang, S. Lee, Photocatalytic reduction of Cr (VI) and Ni (II) in aqueous solution by synthesized nanoparticle ZnO under ultraviolet light irradiation: a kinetic study. Environ. Technol. 32(14), 1573–1579 (2011)

    Article  CAS  Google Scholar 

  15. S. Dehghan, A.J. Jafari, M. FarzadKia, A. Esrafili, R.R. Kalantary, Visible-light-driven photocatalytic degradation of metalaxyl by reduced graphene oxide/Fe3O4/ZnO ternary nanohybrid: influential factors, mechanism and toxicity bioassay. J. Photochem. Photobiol. A 375, 280–292 (2019)

    Article  CAS  Google Scholar 

  16. A. Fakhri, S. Rashidi, I. Tyagi, S. Agarwal, V.K. Gupta, Photodegradation of erythromycin antibiotic by γ-Fe2O3/SiO2 nanocomposite: response surface methodology modeling and optimization. J. Mol. Liq. 214, 378–383 (2016)

    Article  CAS  Google Scholar 

  17. M. Hazarika, I. Saikia, J. Das, C. Tamuly, M.R. Das, Biosynthesis of Fe2O3@ SiO2 nanoparticles and its photocatalytic activity. Mater. Lett. 164, 480–483 (2016)

    Article  CAS  Google Scholar 

  18. D.-G. Kim, S.-O. Ko, Cu@ Fe3O4 core-shell nanoparticle-catalyzed oxidative degradation of the antibiotic oxytetracycline in pre-treated landfill leachate. Chemosphere 191, 639–650 (2018)

    Article  CAS  Google Scholar 

  19. A. Mohagheghian, K. Ayagh, K. Godini, M. Shirzad-Siboni, Enhanced photocatalytic activity of Fe3O4-WO3-APTES for azo dye removal from aqueous solutions in the presence of visible irradiation. Part. Sci. Technol. 37(3), 358–370 (2019)

    Article  CAS  Google Scholar 

  20. N. Radhika, R. Selvin, R. Kakkar, A. Umar, Recent advances in nano-photocatalysts for organic synthesis. Arab. J. Chem. 12(8), 4550–4578 (2019)

    Article  CAS  Google Scholar 

  21. Z. Wang, M. Chen, J. Shu, Y. Li, One-step solvothermal synthesis of Fe3O4@ Cu@ Cu2O nanocomposite as magnetically recyclable mimetic peroxidase. J. Alloys Compd. 682, 432–440 (2016)

    Article  CAS  Google Scholar 

  22. G. Zhao, Z. Mo, P. Zhang, B. Wang, X. Zhu, R. Guo, Synthesis of graphene/Fe 3 O 4/NiO magnetic nanocomposites and its application in photocatalytic degradation the organic pollutants in wastewater. J. Porous Mater. 22(5), 1245–1253 (2015)

    Article  CAS  Google Scholar 

  23. S. Wu, H. Hu, Y. Lin, J. Zhang, Y.H. Hu, Visible light photocatalytic degradation of tetracycline over TiO2. Chem. Eng. J. 382, 122842 (2020)

    Article  CAS  Google Scholar 

  24. L. Chen, C. Zhao, D.D. Dionysiou, K.E. O’Shea, TiO2 photocatalytic degradation and detoxification of cylindrospermopsin. J. Photochem. Photobiol. A 307, 115–122 (2015)

    Article  CAS  Google Scholar 

  25. S. Balachandran, N. Prakash, K. Thirumalai, M. Muruganandham, M. Sillanpää, M. Swaminathan, Facile construction of heterostructured BiVO4–ZnO and its dual application of greater solar photocatalytic activity and self-cleaning property. Ind. Eng. Chem. Res. 53(20), 8346–8356 (2014)

    Article  CAS  Google Scholar 

  26. S. Banerjee, D.D. Dionysiou, S.C. Pillai, Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl. Catal. B 176, 396–428 (2015)

    Article  CAS  Google Scholar 

  27. A. Akyol, M. Bayramoğlu, Photocatalytic degradation of remazol red F3B using ZnO catalyst. J. Hazard. Mater. 124(1–3), 241–246 (2005)

    Article  CAS  Google Scholar 

  28. C. Sajan, B. Shahmoradi, H. Shivaraju, K.L. Rai, S. Ananda, M. Shayan et al., Photocatalytic degradation of textile effluent using hydrothermally synthesised titania supported molybdenum oxide photocatalyst. Mater. Res. Innov. 14(1), 89–94 (2010)

    Article  CAS  Google Scholar 

  29. M.A. Behnajady, N. Modirshahla, M. Mirzamohammady, B. Vahid, B. Behnajady, Increasing photoactivity of titanium dioxide immobilized on glass plate with optimization of heat attachment method parameters. J. Hazard. Mater. 160(2–3), 508–513 (2008)

    Article  CAS  Google Scholar 

  30. M. Cui, S. Pan, Z. Tang, X. Chen, X. Qiao, Q. Xu, Physiochemical properties of nn heterostructured TiO2/Mo-TiO2 composites and their photocatalytic degradation of gaseous toluene. Chem. Speciat. Bioavailab. 29(1), 60–69 (2017)

    Article  CAS  Google Scholar 

  31. B. Shahmoradi, S. Yavari, Y. Zandsalimi, H. Shivaraju, M. Negahdari, A. Maleki et al., Optimization of solar degradation efficiency of bio-composting leachate using Nd: ZnO nanoparticles. J. Photochem. Photobiol. A 356, 201–211 (2018)

    Article  CAS  Google Scholar 

  32. B. Shahmoradi, I. Ibrahim, N. Sakamoto, S. Ananda, T. Guru Row, K. Soga et al., In situ surface modification of molybdenum-doped organic–inorganic hybrid TiO2 nanoparticles under hydrothermal conditions and treatment of pharmaceutical effluent. Environ. Technol. 31(11), 1213–1220 (2010)

    Article  CAS  Google Scholar 

  33. J. Abdi, M. Yahyanezhad, S. Sakhaie, M. Vossoughi, I. Alemzadeh, Synthesis of porous TiO2/ZrO2 photocatalyst derived from zirconium metal organic framework for degradation of organic pollutants under visible light irradiation. J. Environ. Chem. Eng. 7(3), 103096 (2019)

    Article  CAS  Google Scholar 

  34. C. Howard, T. Sabine, F. Dickson, Structural and thermal parameters for rutile and anatase. Acta Crystallogr. B 47(4), 462–468 (1991)

    Article  Google Scholar 

  35. Y. Zhao, C. Li, X. Liu, F. Gu, H. Jiang, W. Shao et al., Synthesis and optical properties of TiO2 nanoparticles. Mater. Lett. 61(1), 79–83 (2007)

    Article  CAS  Google Scholar 

  36. S. Ravi, F.W. Shashikanth, Magnetic properties of Mo-doped TiO2 nanoparticles: a candidate for dilute magnetic semiconductors. Mater. Lett. 264, 127331 (2020)

    Article  CAS  Google Scholar 

  37. K.B. Koozegar, M. Mousaei, Synthesis and investigation of optical and photocatalytic properties of ZnO nanoparticles co-doped with Ti/Si. J. New Mater. 8(4), 71–81 (2018)

  38. T. Suwannaruang, J.P. Hildebrand, D.H. Taffa, M. Wark, K. Kamonsuangkasem, P. Chirawatkul, K. Wantala, Visible light-induced degradation of antibiotic ciprofloxacin over Fe–N–TiO2 mesoporous photocatalyst with anatase/rutile/brookite nanocrystal mixture. J. Photochem. Photobiol. A 391, 112371 (2020). https://doi.org/10.1016/J.JPHOTOCHEM.2020.112371

    Article  CAS  Google Scholar 

  39. T. Suwannaruang, P. Kidkhunthod, N. Chanlek, S. Soontaranon, K. Wantala, High anatase purity of nitrogen-doped TiO2 nanorice particles for the photocatalytic treatment activity of pharmaceutical wastewater. Appl. Surf. Sci. 478, 1–14 (2019). https://doi.org/10.1016/J.APSUSC.2019.01.158

    Article  CAS  Google Scholar 

  40. D. Xue, J. Luo, Z. Li, Y. Yin, J. Shen, Enhanced photoelectrochemical properties from Mo-doped TiO2 nanotube arrays film. Coatings 10(1), 75 (2020). https://doi.org/10.3390/COATINGS10010075

    Article  CAS  Google Scholar 

  41. B. Bharti, S. Kumar, H.-N. Lee, R. Kumar, Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci. Rep. 6, 32355 (2016)

    Article  CAS  Google Scholar 

  42. X. Ma, P. Tang, D. Liu, J. Zhang, L. Feng, L. Wu, Interface engineering of perovskite solar cells with air plasma treatment for improved performance. Chem. Phys. Chem. 18(20), 2939–2946 (2017)

    Article  CAS  Google Scholar 

  43. S. Klosek, D. Raftery, Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol. J. Phys. Chem. B 105(14), 2815–2819 (2002). https://doi.org/10.1021/JP004295E

    Article  Google Scholar 

  44. S.R. Mirmasoomi, M.M. Ghazi, M. Galedari, Photocatalytic degradation of diazinon under visible light using TiO2/Fe2O3 nanocomposite synthesized by ultrasonic-assisted impregnation method. Sep. Purif. Technol. 175, 418–427 (2017)

    Article  CAS  Google Scholar 

  45. P. Pascariu, I.V. Tudose, M. Suchea, E. Koudoumas, N. Fifere, A. Airinei, Preparation and characterization of Ni, Co doped ZnO nanoparticles for photocatalytic applications. Appl. Surf. Sci. 448, 481–488 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was approved by the Ethic Committee of Kurdistan University of Medical Sciences (IRMUKREC. 1397/66). All the authors profusely thank the Kurdistan University of Medical Sciences, Sanandaj, Iran to have supported the review by providing the necessary access to electronic resources.

Funding

This research did not receive any specific grant from any funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

KA executed the laboratory experiments and prepared the first draft of the manuscript. KW, TS, and NA supported laboratory experiments and interpreted the results obtained. AM and SML contributed to interpretation, proofreading, and manuscript finalizing. BS and HPS directed and conceptualized the work and finally proofread the manuscript.

Corresponding authors

Correspondence to Behzad Shahmoradi or Harikaranahalli Puttaiah Shivaraju.

Ethics declarations

Conflict of interest

None of the authors have any competing interests in the manuscript.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to missing grant number in acknowledgement.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedi, K., Shahmoradi, B., Wantala, K. et al. Immobilized Mo:TiO2 nanoparticles for humic acid removal in an aqueous medium using solar spectrum. J Mater Sci: Mater Electron 33, 16777–16788 (2022). https://doi.org/10.1007/s10854-022-08542-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08542-w

Navigation