Skip to main content
Log in

Effect of MWCNTs additive on preservation stability of rGO powder

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Graphene has been widely studied and applied in the electrode materials of supercapacitors due to its good electrical stability and high theoretical capacitance. In this study, graphene oxide (GO) is prepared by a modified Hummer’s method and then reduced to obtain reduced graphene oxide (rGO). However, due to the incomplete reduction, the existence of oxygen-containing groups or defects on graphene layers may lead to poor electrical conductivity. Meanwhile, for thermodynamic stability, the graphene layers tend to agglomerate when kept for long time, resulting in the degradation of electrochemical properties. Multi-walled carbon nanotubes (MWCNTs) are one-dimensional materials with high aspect ratio and high electrical conductivity. Nevertheless, due to their insufficient hydrophilicity, their electrochemical properties such as capacitance are limited, which hinders their further development in supercapacitors. In this work, rGO/MWCNTs composite was synthesized without any surfactants and analyzed by means of structural and electrochemical tests. The variations on microstructure, surface chemical states, defects, and electrochemical properties of rGO/MWCNTs composite at different preservation times were investigated, which were also compared with those of the pure rGO under the same preservation conditions. The results show that, for long-time preservation, the addition of MWCNTs can inhibit the agglomeration of rGO and improve the rate capability and cyclic stability as the electrode material of supercapacitor. This study is of great guiding significance for understanding the time failure of rGO and rGO/MWCNTs composite in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Y. Wang, L. Zhang, H. Hou, W. Xu, G. Duan, S. He, K. Liu, S. Jiang, J. Mater. Sci. 56, 173–200 (2021)

    Article  CAS  Google Scholar 

  2. G.A. Snook, P. Kao, A.S. Best, J. Power Sources 196, 1–12 (2011)

    Article  CAS  Google Scholar 

  3. Z. Li, L. Wang, Y. Li, Y. Feng, W. Feng, Compos. Sci. Technol. 179, 10–40 (2019)

    Article  CAS  Google Scholar 

  4. H. Jiang, P.S. Lee, C. Li, Energy Environ. Sci. 6, 41–53 (2013)

    Article  CAS  Google Scholar 

  5. S. Kumar, G. Saeed, L. Zhu, K.N. Hui, N.H. Kim, J.H. Lee, Chem. Eng. J. 403, 126352 (2021)

    Article  CAS  Google Scholar 

  6. L. Zhang, J. Yuan, S. Su, Y. Cui, W. Shi, X. Zhu, J. Wood Chem. Technol. 41, 46–57 (2020)

    Article  Google Scholar 

  7. V. Augustyn, P. Simon, B. Dunn, Energy Environ Sci 7, 1597–1614 (2014)

    Article  CAS  Google Scholar 

  8. X. Xia, J. Tu, Y. Zhang, X. Wang, C. Gu, X. Zhao, H.J. Fan, ACS Nano 6, 5531–5538 (2012)

    Article  CAS  Google Scholar 

  9. Z. Wu, G. Zhou, L. Yin, W. Ren, F. Li, H. Cheng, Nano Energy 1, 107–131 (2012)

    Article  CAS  Google Scholar 

  10. S. Su, L. Lai, R. Li, Y. Lin, H. Dai, X. Zhu, ACS Appl. Energy Mater. 3, 9379–9389 (2020)

    Article  CAS  Google Scholar 

  11. F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang, L. Fu, Y. Zhu, Q. Zhou, Y. Wu, W. Huang, Chem. Soc. Rev. 46, 6816–6854 (2017)

    Article  CAS  Google Scholar 

  12. D. Sheberla, J.C. Bachman, J.S. Elias, C. Sun, Y. Shaohorn, M. Dinca, Nat. Mater. 16, 220–224 (2017)

    Article  CAS  Google Scholar 

  13. R.R. Salunkhe, J. Tang, Y. Kamachi, T. Nakato, J.H. Kim, Y. Yamauchi, ACS Nano 9, 6288–6296 (2015)

    Article  CAS  Google Scholar 

  14. C. Zhang, B. Anasori, A. Seralascaso, S.H. Park, N. McEvoy, A. Shmeliov, G.S. Duesberg, J.N. Coleman, Y. Gogotsi, V. Nicolosi, Adv. Mater. 29, 1702678 (2017)

    Article  Google Scholar 

  15. M. Boota, B. Anasori, C. Voigt, M.Q. Zhao, M.W. Barsoum, Y. Gogotsi, Adv. Mater. 28, 1517–1522 (2016)

    Article  CAS  Google Scholar 

  16. Z. Ling, C.E. Ren, M. Zhao, J. Yang, J.M. Giammarco, J. Qiu, M.W. Barsoum, Y. Gogotsi, Proc. Natl. Acad. Sci. USA 111, 16676–16681 (2014)

    Article  CAS  Google Scholar 

  17. M. Balogun, Y. Huang, W. Qiu, H. Yang, H. Ji, Y. Tong, Mater. Today 20, 425–451 (2017)

    Article  CAS  Google Scholar 

  18. J. Wen, J. Xie, X. Chen, X. Li, Appl. Surf. Sci. 391, 72–123 (2017)

    Article  CAS  Google Scholar 

  19. Z. Xiang, D. Cao, L. Huang, J. Shui, M. Wang, L. Dai, Adv. Mater. 26, 3315 (2014)

    Article  CAS  Google Scholar 

  20. P. Bhanja, K. Bhunia, S.K. Das, D. Pradhan, R. Kimura, Y. Hijikata, S. Irle, A. Bhaumik, ChemSusChem 10, 921–929 (2017)

    Article  CAS  Google Scholar 

  21. A. Halder, M. Ghosh, A.M. Khayum, S. Bera, M. Addicoat, H.S. Sasmal, S. Karak, S. Kurungot, R. Banerjee, J. Am. Chem. Soc. 140, 10941–10945 (2018)

    Article  CAS  Google Scholar 

  22. M. Vangari, T. Pryor, L. Jiang, J. Energy Eng. 139, 72–79 (2013)

    Article  Google Scholar 

  23. Z. Yang, J. Tian, Z. Yin, C. Cui, W. Qian, F. Wei, Carbon 141, 467–480 (2019)

    Article  CAS  Google Scholar 

  24. S. Korkmaz, I.A. Kariper, J. Storage Mater. 27, 101038 (2020)

    Google Scholar 

  25. J. Tian, Z. Yang, Z. Yin, Z. Ye, J. Wang, C. Cui, W. Qian, Chem. Rec. 19, 1256–1262 (2019)

    Article  CAS  Google Scholar 

  26. B. Wang, T. Ruan, Y. Chen, F. Jin, L. Peng, Y. Zhou, D. Wang, S. Dou, Energy Storage Mater. 24, 22–51 (2020)

    Article  Google Scholar 

  27. J. Liu, P. Li, Y. Chen, Z. Wang, J. He, H. Tian, F. Qi, B. Zheng, J. Zhou, W. Lin, W. Zhang, J. Alloys Compd. 615, 415–418 (2014)

    Article  CAS  Google Scholar 

  28. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J. Ahn, P. Kim, J. Choi, B.H. Hong, Nature 457, 706–710 (2009)

    Article  CAS  Google Scholar 

  29. S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.J. Kim, K.S. Kim, B. Ozyilmaz, J.H. Ahn, B.H. Hong, S. Iijima, Nat. Nanotechnol. 5, 574–578 (2010)

    Article  CAS  Google Scholar 

  30. T.T. Baby, S.S.J. Aravind, T. Arockiadoss, R.B. Rakhi, S. Ramaprabhu, Sens. Actuators B 145, 71–77 (2010)

    Article  CAS  Google Scholar 

  31. J. Moser, A. Verdaguer, D. Jimenez, A. Barreiro, A. Bachtold, Appl. Phys. Lett. 92, 123507 (2008)

    Article  Google Scholar 

  32. J. Shim, C.H. Lui, T.Y. Ko, Y.-J. Yu, P. Kim, T.F. Heinz, S. Ryu, Nano Lett. 12, 648–654 (2012)

    Article  CAS  Google Scholar 

  33. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45, 1558–1565 (2007)

    Article  CAS  Google Scholar 

  34. G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, J. Phys. Chem. C 112, 8192–8195 (2008)

    Article  CAS  Google Scholar 

  35. S. Gilje, S. Han, M. Wang, K.L. Wang, R.B. Kaner, Nano Lett. 7, 3394–3398 (2007)

    Article  CAS  Google Scholar 

  36. Y. Xu, K. Sheng, C. Li, G. Shi, ACS Nano 4, 4324–4330 (2010)

    Article  CAS  Google Scholar 

  37. Y. Zhou, Q. Bao, L.A.L. Tang, Y. Zhong, K.P. Loh, Chem. Mater. 21, 2950–2956 (2009)

    Article  CAS  Google Scholar 

  38. L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K.S. Teng, C.M. Luk, S. Zeng, J. Hao, S.P. Lau, ACS Nano 6, 5102–5110 (2012)

    Article  CAS  Google Scholar 

  39. S. Zhu, J. Zhang, C. Qiao, S. Tang, Y. Li, W. Yuan, B. Li, L. Tian, F. Liu, R. Hu, H. Gao, H. Wei, H. Zhang, H. Sun, B. Yang, Chem. Commun. 47, 6858–6860 (2011)

    Article  CAS  Google Scholar 

  40. C. Nethravathi, M. Rajamathi, Carbon 46, 1994–1998 (2008)

    Article  CAS  Google Scholar 

  41. D. Deng, X. Pan, L. Yu, Y. Cui, Y. Jiang, J. Qi, W. Li, Q. Fu, X. Ma, Q. Xue, G. Sun, X. Bao, Chem. Mater. 23, 1188–1193 (2011)

    Article  CAS  Google Scholar 

  42. C.K. Chua, M. Pumera, Chem. Soc. Rev. 43, 291–312 (2014)

    Article  CAS  Google Scholar 

  43. Z. Lei, L. Lu, X.S. Zhao, Energy Environ. Sci. 5, 6391–6399 (2012)

    Article  CAS  Google Scholar 

  44. P. Bharathidasan, M.B. Idris, D.-W. Kim, S.R. Sivakkumar, S. Devaraj, Flatchem 11, 24–31 (2018)

    Article  CAS  Google Scholar 

  45. N. Guo, Y. Cui, S. Su, L. Lai, L. Zhang, X. Zhu, J. Mater. Sci. Mater. Electron. 32, 6636–6647 (2021)

    Article  CAS  Google Scholar 

  46. F.Y. Ban, S. Jayabal, H.N. Lim, H.W. Lee, N.M. Huang, Ceram. Int. 43, 20–27 (2017)

    Article  CAS  Google Scholar 

  47. X. Liu, J. Guo, J. Chen, J. Zhang, J. Zhang, J. Power Sources 363, 54–60 (2017)

    Article  CAS  Google Scholar 

  48. L. Yao, C. Zhou, N. Hu, J. Hu, M. Hong, L. Zhang, Y. Zhang, Appl. Surf. Sci. 435, 699–707 (2018)

    Article  CAS  Google Scholar 

  49. Q. Yang, S.K. Pang, K.C. Yung, J. Power Sources 311, 144–152 (2016)

    Article  CAS  Google Scholar 

  50. C. Wang, Y. Yang, R. Li, D. Wu, Y. Qin, Y. Kong, Chem. Commun. 56, 4003–4006 (2020)

    Article  CAS  Google Scholar 

  51. E.E. Tkalya, M. Ghislandi, G. de With, C.E. Koning, Curr. Opin. Colloid Interface Sci. 17, 225–231 (2012)

    Article  CAS  Google Scholar 

  52. M.E. Uddin, T. Kuila, G.C. Nayak, N.H. Kim, B.C. Ku, J.H. Lee, J. Alloys Compd. 562, 134–142 (2013)

    Article  CAS  Google Scholar 

  53. L. Lai, Y. Lin, S. Su, L. Zhang, Y. Cui, N. Guo, X. Zhu, J. Storage Mater. 35, 102295 (2021)

    Google Scholar 

  54. L. Ji, M.M. Stevens, Y. Zhu, Q. Gong, J. Wu, J. Liang, Carbon 47, 2733–2741 (2009)

    Article  CAS  Google Scholar 

  55. R. Atif, F. Inam, Beilstein J. Nanotechnol. 7, 1174–1196 (2016)

    Article  CAS  Google Scholar 

  56. M.E. Birch, T.A. Ruda Eberenz, M. Chai, R. Andrews, R.L. Hatfield, Ann. Occup. Hyg. 57, 1148–1166 (2013)

    CAS  Google Scholar 

  57. P. Venkataramanaiah, R. Aradhya, S.J. Rajan, Polym. Compos. 42, 618–633 (2021)

    Article  CAS  Google Scholar 

  58. F. Lorestani, Z. Shahnavaz, P. Mn, Y. Alias, N.S.A. Manan, Sens. Actuators B 208, 389–398 (2015)

    Article  CAS  Google Scholar 

  59. J.H. Lehman, M. Terrones, E. Mansfield, K.E. Hurst, V. Meunier, Carbon 49, 2581–2602 (2011)

    Article  CAS  Google Scholar 

  60. P. Shi, L. Li, L. Hua, Q. Qian, P. Wang, J. Zhou, G. Sun, W. Huang, ACS Nano 11, 444–452 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Key Research and Development Project of Sichuan Province, China (Grant No. 2017GZ0396), Guizhou Science and Technology Program (Grant No. [2020]2Y063-2020QT), and the Fundamental Research Funds for Central Universities. The authors acknowledge the help of Ms. Hui Wang from the Analytical and Testing Center of Sichuan University for SEM analysis.

Author information

Authors and Affiliations

Authors

Contributions

NG: Investigation, Methodology, and Writing—original draft. YL: Methodology, Data curation, and Writing—original draft. YC: Methodology and Data curation. SS: Investigation and Validation. HD: Investigation. JY: Resources. XZ: Supervision, Writing—review & editing, Resources, and Funding acquisition.

Corresponding author

Correspondence to Xiaohong Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 139.3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, N., Lin, Y., Cui, Y. et al. Effect of MWCNTs additive on preservation stability of rGO powder. J Mater Sci: Mater Electron 33, 6766–6779 (2022). https://doi.org/10.1007/s10854-022-07854-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07854-1

Navigation