Skip to main content
Log in

Performance evaluation of dye-sensitized solar cells (DSSCs) based on metal-free thieno[3,2-b]indole dyes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of thieno[3,2-b]indole-based dyes (IS 1–10) was readily synthesized in three steps from 2-(thien-2-yl)thieno[3,2-b]indole as the key precursor, and further applied as photosensitizers for dye-sensitized solar cells (DSSCs). In general, the prepared dyes have a push–pull (donor-π-linker-acceptor) structure, included thieno[3,2-b]indole ring system, bearing different aliphatic substituents at the nitrogen atom, as an electron-donating part, single thiophene unit as π-linker, and 2-cyanoacrylic acid (IS 1–5), or 5-(methylene)barbituric acid (IS 6–10) as an acceptor-anchoring group. The DSSC devices based on IS 1–10 dyes were fabricated using commercially available TiO2-coated photoanodes, and their photovoltaic characteristics were investigated. The DSSCs based on IS 1–5 dyes exhibited values of power conversion efficiency (PCE) in the range of 2.25–3.02%, while the DSSCs based on IS 6–10 dyes showed significantly low values of PCE in the range of 0.20–0.32% under AM 1.5G illumination (100 mW cm−2). The highest PCE value of 3.02% (Jsc = 7.59 mA cm−2, Voc = 0.62 V, FF = 0.64) was achieved for DSSC based on dye IS 4, bearing 2-cyanoacrylic acid as an acceptor-anchoring group among all dyes IS 1–10, whereas IS 9, bearing 5-(methylene)barbituric acid displays best PCE of 0.32% (Jsc = 0.87 mA cm−2, Voc = 0.53 V and FF = 0.68) among dyes IS 6–10. Therefore, additional studies, including thermogravimetric analysis, UV–Vis, and FTIR-measurements on the TiO2 surface, cyclic voltammograms, and photoelectrochemical measurements, were carried out for these two dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Supplementary data to this article can be found online at https://doi.org/10.1007/s10854-022-07805-w.

Code availability

Not applicable.

References

  1. L. Fraas, L. Partain (eds.), Solar Cells and Their Applications, 2nd edn. (Wiley, Chichester, 2010)

    Google Scholar 

  2. B. O’Regan, M. Grätzel, Nature 353, 737 (1991)

    Article  Google Scholar 

  3. M. Grätzel, J. Photochem. Photobiol. C Photochem. Rev. 4, 145 (2003)

    Article  Google Scholar 

  4. A. Błaszczyk, in Chem. Solut. Synth. Mater. Des. Thin Film Device Appl. (Elsevier, 2021), pp. 509–544

  5. C.P. Lee, C.T. Li, K.C. Ho, Mater. Today 20, 267 (2017)

    Article  CAS  Google Scholar 

  6. K. Sharma, V. Sharma, S.S. Sharma, Nanoscale Res. Lett. 13, 1 (2018)

    Article  Google Scholar 

  7. G. Boschloo, Front. Chem. 7, 77 (2019)

    Article  CAS  Google Scholar 

  8. H.A. Maddah, V. Berry, S.K. Behura, Renew. Sustain. Energy Rev. 121, 109–678 (2020)

    Article  Google Scholar 

  9. Z. Yao, M. Zhang, H. Wu, L. Yang, R. Li, P. Wang, J. Am. Chem. Soc. 137, 3799 (2015)

    Article  CAS  Google Scholar 

  10. N. Órdenes-Aenishanslins, G. Anziani-Ostuni, M. Vargas-Reyes, J. Alarcón, A. Tello, J.M. Pérez-Donoso, J. Photochem. Photobiol. B Biol. 162, 707 (2016)

    Article  Google Scholar 

  11. H. Jiang, Y. Wu, A. Islam, M. Wu, W. Zhang, C. Shen, H. Zhang, E. Li, H. Tian, W.H. Zhu, ACS Appl. Mater. Interfaces 10, 13635 (2018)

    Article  CAS  Google Scholar 

  12. Y. Mu, H. Wu, G. Dong, Z. Shen, S. Li, M. Zhang, J. Mater. Chem. A 6, 21493 (2018)

    Article  CAS  Google Scholar 

  13. P. Kumaresan, S. Vegiraju, Y. Ezhumalai, S. Yau, C. Kim, W.-H. Lee, M.-C. Chen, P. Kumaresan, S. Vegiraju, Y. Ezhumalai, S.L. Yau, C. Kim, W.-H. Lee, M.-C. Chen, Polymers (Basel). 6, 2645 (2014)

    Article  Google Scholar 

  14. S. Chaurasia, J.T. Lin, Chem. Rec. 16, 1311 (2016)

    Article  CAS  Google Scholar 

  15. Y. Li (ed.), Organic Optoelectronic Materials (Springer, Cham, 2015)

    Google Scholar 

  16. M. Liang, J. Chen, Chem. Soc. Rev. 42, 3453 (2013)

    Article  CAS  Google Scholar 

  17. Y. Wu, W. Zhu, Chem. Soc. Rev. 42, 2039 (2013)

    Article  Google Scholar 

  18. T.N. Murakami, N. Koumura, Adv. Energy Mater. 9, 1802967 (2019)

    Article  Google Scholar 

  19. A.S. Steparuk, R.A. Irgashev, G.L. Rusinov, E.V. Krivogina, P.I. Lazarenko, S.A. Kozyukhin, Russ. Chem. Bull. 68, 1208 (2019)

    Article  CAS  Google Scholar 

  20. R.A. Irgashev, G.A. Kim, G.L. Rusinov, V.N. Charushin, ARKIVOC 2014, 123 (2014)

    Article  Google Scholar 

  21. X.-H. Zhang, Y. Cui, R. Katoh, N. Koumura, K. Hara, J. Phys. Chem. C 114, 18283 (2010)

    Article  CAS  Google Scholar 

  22. R. Kesavan, F. Attia, R. Su, P. Anees, A. El-Shafei, A.V. Adhikari, J. Phys. Chem. C 123, 24383 (2019)

    Article  CAS  Google Scholar 

  23. L. Zhang, J.M. Cole, J. Mater. Chem. A 5, 19541 (2017)

    Article  CAS  Google Scholar 

  24. X. Yang, M. Yanagida, L. Han, Energy Environ. Sci. 6, 54 (2012)

    Article  Google Scholar 

  25. F. Wu, X. Li, Y. Tong, T. Zhang, J. Power Sources 342, 704 (2017)

    Article  CAS  Google Scholar 

  26. P. Liu, W. Wang, S. Liu, H. Yang, Z. Shao, Adv. Energy Mater. 9, 1803017 (2019)

    Article  Google Scholar 

  27. S. Sarker, H.W. Seo, Y.K. Jin, K.S. Lee, M. Lee, D.M. Kim, Electrochim. Acta 182, 493 (2015)

    Article  CAS  Google Scholar 

  28. H. Elbohy, H. El-Mahalawy, N.A. El-Ghamaz, H. Zidan, Electrochim. Acta 319, 110 (2019)

    Article  CAS  Google Scholar 

  29. H.J. Snaith, A. Abate, J.M. Ball, G.E. Eperon, T. Leijtens, N.K. Noel, S.D. Stranks, J.T.-W. Wang, K. Wojciechowski, W. Zhang, J. Phys. Chem. Lett. 5, 1511 (2014)

    Article  CAS  Google Scholar 

  30. P.I. Lazarenko, S.A. Kozyukhin, A.I. Mokshina, A.A. Sherchenkov, T.N. Patrusheva, R.A. Irgashev, E.A. Lebedev, V.V. Kozik, Russ. Phys. J. 61, 196 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Analytical studies were carried out using equipment of the Center for Joint Use «Spectroscopy and Analysis of Organic Compounds» at the Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences. This work was financially supported by the Russian Foundation for Basic Research (Project No. 18-29-11037 mk). A.S.S. is grateful to the partial financial support from the Ministry of Education and Science of the Russian Federation within the framework of the State Assignment for Research (Project No. AAAA-A19-119012490006-1). V.V.E. and V.A.G. are grateful to the partial financial support from the Ministry of Science and Higher Education of the Russian Federation in the frame of the State Task for 2021 IPCE RAS. E.V.K. is grateful to the partial financial support from the Foundation for Assistance to Small Innovative Enterprises the UMNIK (Project No. 14534GU/2019).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: VVE, VAG, GLR, and SAK; device fabrication: ASS and EVK; methodology: ASS and RAI; validation: EFZ, EVB, and PIL; writing—original draft preparation: ASS and RAI; writing—review and editing: RAI and PIL; supervision: GLR and SAK.

Corresponding author

Correspondence to Roman A. Irgashev.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18054 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steparuk, A.S., Irgashev, R.A., Zhilina, E.F. et al. Performance evaluation of dye-sensitized solar cells (DSSCs) based on metal-free thieno[3,2-b]indole dyes. J Mater Sci: Mater Electron 33, 6307–6317 (2022). https://doi.org/10.1007/s10854-022-07805-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07805-w

Navigation