Skip to main content

Advertisement

Log in

Hybrid multilayered piezoelectric energy harvesters with non-piezoelectric layers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Fibrous piezoelectric structures as an organic structure constitute a new area of advanced materials for flexible and stretchable sensors and actuators. It is highly desirable to design the structure of piezoelectric generator that the external force can be well-distributed across the entire piezoelectric layer to maximize their power generation. This paper presents a multilayer hybrid structure utilizing electrospun nanofibers and three different materials as passive layers (non-piezoelectric layers) to improve the stress/strain distribution across the piezoelectric layer. Results showed that adding a passive layer could increase the bending modulus of the samples and reduce flexibility. However, they still have the required flexibility to be used in a flexible piezoelectric energy harvester. Under the tapping state, the electrical output of polyvinylidene fluoride (PVDF) nanogenerator devices is highly dependent on the passive layer materials. Furthermore, the results under bending showed that electrical output could be increased using any types of passive layers. It was concluded that adding aluminum, cellulose and polyester as passive layers could increase the electrical output about 4.7, 3 and 4.2 times more than the sample without any passive layer, respectively. Finally, the fabricated nanogenerator showed promising potential for applications such as smart textiles and self-powered wearable devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Vivekananthan, V., et al., Triboelectric Nanogenerators: Design, Fabrication, Energy Harvesting, and Portable-Wearable Applications, in Nanogenerators. 2020, IntechOpen.

  2. P. Costa et al., Recent progress on piezoelectric, pyroelectric, and magnetoelectric polymer-based energy-harvesting devices. Energy Technol. 7(7), 1800852 (2019)

    Article  Google Scholar 

  3. K. Polat, Energy harvesting from a thin polymeric film based on PVDF-HFP and PMMA blend. Appl. Phys. A 126, 1–8 (2020)

    Article  Google Scholar 

  4. F. Narita, M. Fox, A review on piezoelectric, magnetostrictive, and magnetoelectric materials and device technologies for energy harvesting applications. Adv. Eng. Mater. 20(5), 1700743 (2018)

    Article  Google Scholar 

  5. M.S. Bafqi, R. Bagherzadeh, M. Latifi, Nanofiber alignment tuning: An engineering design tool in fabricating wearable power harvesting devices. J. Ind. Text. 47(4), 535–550 (2017)

    Article  Google Scholar 

  6. H. Liu et al., A comprehensive review on piezoelectric energy harvesting technology: materials, mechanisms, and applications. Appl. Phys. Rev. 5(4), 041306 (2018)

    Article  Google Scholar 

  7. Bafqi, M.S., et al., Design and fabrication of a piezoelectric out-put evaluation system for sensitivity measurements of fibrous sensors and actuators. J. Ind. Text., 2019: p. 1528083719867443.

  8. Y. Zhang et al., Ferroelectric and piezoelectric effects on the optical process in advanced materials and devices. Adv. Mater. 30(34), 1707007 (2018)

    Article  Google Scholar 

  9. M.S.S. Bafqi, R. Bagherzadeh, M. Latifi, Fabrication of composite PVDF-ZnO nanofiber mats by electrospinning for energy scavenging application with enhanced efficiency. J. Polym. Res. 22(7), 130 (2015)

    Article  Google Scholar 

  10. Y. Zou, L. Bo, Z. Li, Recent progress in human body energy harvesting for smart bioelectronic system. Fundame Res 21, 3806 (2021)

    Google Scholar 

  11. G. Zandesh et al., Piezoelectric electrospun nanofibrous energy harvesting devices: influence of the electrodes position and finite variation of dimensions. J. Ind. Text. 47(3), 348–362 (2017)

    Article  CAS  Google Scholar 

  12. M.T. Todaro et al., Biocompatible, flexible, and compliant energy harvesters based on piezoelectric thin films. IEEE Trans. Nanotechnol. 17(2), 220–230 (2018)

    Article  CAS  Google Scholar 

  13. Bafqi, M.S., et al., Expected lifetime of fibrous nanogenerator exposed to cyclic compressive pressure. 2020: p. 1528083720915835.

  14. A. Gomez et al., Piezo-generated charge mapping revealed through direct piezoelectric force microscopy. Nat. Commun. 8(1), 1–10 (2017)

    Article  CAS  Google Scholar 

  15. Y. Zhang et al., Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications. J. Mater. Chem. A 5(14), 6569–6580 (2017)

    Article  CAS  Google Scholar 

  16. M. Habib et al., Enhanced piezoelectric performance of donor La3+-doped BiFeO3–BaTiO3 lead-free piezoceramics. Ceram. Int. 46(6), 7074–7080 (2020)

    Article  CAS  Google Scholar 

  17. Gao, J. et al., Recent progress on BaTiO3-based piezoelectric ceramics for actuator applications in Actuators. 2017. Multidisciplinary Digital Publishing Institute.

  18. Azimi, B. et al., Electrospinning piezoelectric fibers for biocompatible devices. Adv Healthcare Mat. 2019: p. 1901287.

  19. Azimi, B. et al., Electrospun ZnO/poly (vinylidene fluoride-trifluoroethylene) scaffolds for lung tissue engineering. 2020(ja).

  20. S. Tiwari et al., Enhanced piezoelectric response in nanoclay induced electrospun PVDF nanofibers for energy harvesting. Energy Harvest. Syst. 171, 485–492 (2019)

    CAS  Google Scholar 

  21. S.M. Damaraju et al., Structural changes in PVDF fibers due to electrospinning and its effect on biological function. Biomed. Mater. 8(4), 045007 (2013)

    Article  CAS  Google Scholar 

  22. S. Gee, B. Johnson, A. Smith, Optimizing electrospinning parameters for piezoelectric PVDF nanofiber membranes. J. Membr. Sci. 563, 804–812 (2018)

    Article  CAS  Google Scholar 

  23. S. Gowthaman et al., A review on energy harvesting using 3D printed fabrics for wearable electronics. J Inst. Eng. 99(4), 435–447 (2018)

    Google Scholar 

  24. G. Zhang et al., Harvesting energy from human activity: ferroelectric energy harvesters for portable, implantable, and biomedical electronics. Energy Technol. 6(5), 791–812 (2018)

    Article  CAS  Google Scholar 

  25. L. Ruan et al., Properties and applications of the β phase poly (vinylidene fluoride). Polymers 10(3), 228 (2018)

    Article  Google Scholar 

  26. S. Khalid et al., A review of human-powered energy harvesting for smart electronics: Recent progress and challenges. Int. J. Precis. Eng. Manuf.-Green Technol. 6(4), 821–851 (2019)

    Article  Google Scholar 

  27. A. Talbourdet et al., 3D interlock design 100% PVDF piezoelectric to improve energy harvesting. Smart Mater. Struct. 27(7): 075010 (2018)

    Article  Google Scholar 

  28. T. Park et al., Highly conductive PEDOT electrodes for harvesting dynamic energy through piezoelectric conversion. J. Mater. Chem. A 2(15), 5462–5469 (2014)

    Article  CAS  Google Scholar 

  29. J. Zhao, Z. You, A shoe-embedded piezoelectric energy harvester for wearable sensors. Sensors 14(7), 12497–12510 (2014)

    Article  CAS  Google Scholar 

  30. D. Chen, T. Sharma, J.X. Zhang, Mesoporous surface control of PVDF thin films for enhanced piezoelectric energy generation. Sens. Actuators A 216, 196–201 (2014)

    Article  CAS  Google Scholar 

  31. S. Jana et al., The influence of hydrogen bonding on the dielectric constant and the piezoelectric energy harvesting performance of hydrated metal salt mediated PVDF films. Phys. Chem. Chem. Phys. 17(26), 17429–17436 (2015)

    Article  CAS  Google Scholar 

  32. J.-H. Lee et al., Highly sensitive stretchable transparent piezoelectric nanogenerators. Energy Environ. Sci. 6(1), 169–175 (2013)

    Article  CAS  Google Scholar 

  33. Y. Cho et al., Enhanced energy harvesting based on surface morphology engineering of P (VDF-TrFE) film. Nano Energy 16, 524–532 (2015)

    Article  CAS  Google Scholar 

  34. Z. Pi et al., Flexible piezoelectric nanogenerator made of poly (vinylidenefluoride-co-trifluoroethylene)(PVDF-TrFE) thin film. Nano Energy 7, 33–41 (2014)

    Article  CAS  Google Scholar 

  35. V. Bhavanasi et al., Enhanced piezoelectric energy harvesting performance of flexible PVDF-TrFE bilayer films with graphene oxide. ACS Appl. Mater. Interfaces 8(1), 521–529 (2016)

    Article  CAS  Google Scholar 

  36. M. Nuawi et al., Comparative study of whole-body vibration exposure between train and car passengers: a case study in malaysia. Int. J. Automot. Mech. Eng. 4, 490–503 (2011)

    Article  Google Scholar 

  37. A. Ismail et al., Whole-body vibration exposure of Malaysian taxi drivers. Int. J. Automot. Mech. Eng. 11, 2786 (2015)

    Article  Google Scholar 

  38. Mineto, A., et al., Modelling of a cantilever beam for piezoelectric energy harvesting. In: 9th Brazilian conference on Dynamics, control and their applications, Sao Carlos, 2010.

  39. A.G. Muthalif, N.D. Nordin, Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: Modeling, simulation and experimental results. Mech. Syst. Signal Process. 54, 417–426 (2015)

    Article  Google Scholar 

  40. M. Salim et al., New simulation approach for tuneable trapezoidal and rectangular piezoelectric bimorph energy harvesters. Microsyst. Technol. 23(6), 2097–2106 (2017)

    Article  Google Scholar 

  41. H.-C. Song et al., Multilayer piezoelectric energy scavenger for large current generation. J. Electroceram. 23(2–4), 301 (2009)

    Article  CAS  Google Scholar 

  42. Zhu, D., et al., A bimorph multi-layer piezoelectric vibration energy harvester. 2010.

  43. M.S. Woo et al., Study on increasing output current of piezoelectric energy harvester by fabrication of multilayer thick film. Sens. Actuators A 269, 524–534 (2018)

    Article  CAS  Google Scholar 

  44. Y. Bai, H. Jantunen, J. Juuti, Energy harvesting research: the road from single source to multisource. Adv. Mater. 30(34), 1707271 (2018)

    Article  Google Scholar 

  45. D.-J. Shin et al., Multi-layered piezoelectric energy harvesters based on PZT ceramic actuators. Ceram. Int. 41, S686–S690 (2015)

    Article  CAS  Google Scholar 

  46. M. Safaei, H.A. Sodano, S.R. Anton, A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008–2018). Smart Mater. Struct. 28(11), 113001 (2019)

    Article  CAS  Google Scholar 

  47. W.-S. Jung et al., Powerful curved piezoelectric generator for wearable applications. J. Nano Energy 13, 174–181 (2015)

    Article  CAS  Google Scholar 

  48. K.-I. Park et al., Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett. 10(12), 4939–4943 (2010)

    Article  CAS  Google Scholar 

  49. Bagherzadeh, R., et al., Flexible and stretchable nanofibrous piezo-and triboelectric wearable electronics.

  50. Z. Yang et al., High-performance piezoelectric energy harvesters and their applications. Joule 2(4), 642–697 (2018)

    Article  CAS  Google Scholar 

  51. S. Paquin, Y. St-Amant, Improving the performance of a piezoelectric energy harvester using a variable thickness beam. Smart Mater. Struct. 19(10), 105020 (2010)

    Article  Google Scholar 

  52. Nguyen Thai, C., et al., On the nanoscale mapping of the mechanical and piezoelectric properties of poly (L-Lactic Acid) electrospun nanofibers. 2020.

  53. S. Satapathy et al., Effect of annealing on phase transition in poly (vinylidene fluoride) films prepared using polar solvent. Bull. Mater. Sci. 34(4), 727 (2011)

    Article  CAS  Google Scholar 

  54. L. Persano et al., High performance piezoelectric devices based on aligned arrays of nanofibers of poly (vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 4, 1633 (2013)

    Article  Google Scholar 

  55. M.-H. You et al., A self-powered flexible hybrid piezoelectric–pyroelectric nanogenerator based on non-woven nanofiber membranes. J. Mater. Chem. A 6(8), 3500–3509 (2018)

    Article  CAS  Google Scholar 

  56. A. Hartono et al., Effect of mechanical treatment temperature on electrical properties and crystallite size of PVDF Film. Adv. Mater. Phys. Chem. 3(1), 71–76 (2013)

    Article  Google Scholar 

  57. J.I. Langford, A. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11(2), 102–113 (1978)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support provided by the ATMT Institute, Department of Electrical and Computer Engineering, Deakin University, University of Donghua, and INSF (Grant No 97016813) are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roohollah Bagherzadeh.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yahyapour, R., Sorayani Bafqi, M.S., Latifi, M. et al. Hybrid multilayered piezoelectric energy harvesters with non-piezoelectric layers. J Mater Sci: Mater Electron 33, 1783–1797 (2022). https://doi.org/10.1007/s10854-021-07296-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07296-1

Navigation