Skip to main content

Advertisement

Log in

Effect of PPy concentration on the photoluminescence of PPy–PMMA blends: observation of acceptor concentration-dependent FRET

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Luminescent polypyrrole–polymethylmethacrylate (PPy–PMMA) blends have been obtained by bulk polymerization of MMA in presence of different concentration of PPy nanowires. The PPy nanowires are distributed over the rock-like features of PMMA as observed from SEM images. Raman spectra indicate the formation of blend. PPy–PMMA blends exhibit high photoluminescence emission intensity though PPy is not a fluorescent polymer. All the blends exhibit blue emission as observed in CIE diagram. Enhanced emission from the blend as compared to pristine PPy is obtained due to Forster resonance energy transfer (FRET) between PMMA and PPy. The emission intensity of the blend becomes highest for an optimized amount of both the components, i.e. 0.8 g of PPy to 1 ml of MMA in the blend with energy transfer efficiency of 66% and high colour purity. So, optimization of the amount of PPy and PMMA in the blend is important to get high luminescence from the PPy–PMMA blend. The maximum electroluminescence quantum efficiency of the polymer light-emitting diode (PLED) using optimized PPy–PMMA blend as active layer is found to be 2% at turn on voltage of 3 V for the emission at wavelength of 400 nm, whereas at turn on voltage of 3.5 V, the PLED emits light of wavelength 330 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A.W. Grice, D.D.C. Bradley, M.T. Bernius, M. Inbasekaran, W.W. Wu, E.P. Woo, High brightness and efficiency blue light-emitting polymer diodes. Appl. Phys. Lett. 73(5), 629–631 (1998)

    Article  CAS  Google Scholar 

  2. N.A. Iyengar, B. Harrison, R.S. Duran, K.S. Schanze, J.R. Reynolds, Morphology evolution in nanoscale light-emitting domains in MEH-PPV/PMMA blends. Macromolecules 36(24), 8978–8985 (2003)

    Article  CAS  Google Scholar 

  3. F. Kong, Y.M. Sun, R.K. Yuan, Enhanced resonance energy transfer from PVK to MEH-PPV in nanoparticles. Nanotechnology 18(26), 265707 (2007)

    Article  CAS  Google Scholar 

  4. M.M. Abutalib, A. Rajeh, Preparation and characterization of polyaniline/sodium alginate-doped TiO 2 nanoparticles with promising mechanical and electrical properties and antimicrobial activity for food packaging applications. J. Mater. Sci.: Mater. Electron. 31(12), 9430–9442 (2020)

    CAS  Google Scholar 

  5. A.M. Hezma, I.S. Elashmawi, A. Rajeh, M. Kamal, Change spectroscopic, thermal and mechanical studies of PU/PVC blends. Physica. B. Condens. Matter. 495, 4–10 (2016)

    Article  CAS  Google Scholar 

  6. A. Rajeh, M.A. Morsi, I.S. Elashmawi, Enhancement of spectroscopic, thermal, electrical and morphological properties of polyethylene oxide/carboxymethyl cellulose blends: combined FT-IR/DFT. Vacuum 159, 430–440 (2019)

    Article  CAS  Google Scholar 

  7. F.A. Hezam, A. Rajeh, O. Nur, M.A. Mustafa, Synthesis and physical properties of spinel ferrites/MWCNTs hybrids nanocomposites for energy storage and photocatalytic applications. Phys. B. Condens. Matter. 596, 412389 (2020)

    Article  CAS  Google Scholar 

  8. M.M. Abutalib, A. Rajeh, Enhanced structural, electrical, mechanical properties and antibacterial activity of Cs/PEO doped mixed nanoparticles (Ag/TiO2) for food packaging applications. Polym. Test. 93, 107013 (2021)

    Article  CAS  Google Scholar 

  9. Q.A. Alsulami, Structural, dielectric, and magnetic studies based on MWCNTs/NiFe2O4/ /ZnO nanoparticles dispersed in polymer PVA/PEO for electromagnetic applications. J. Mater. Sci. Mater. Electron. 32(3), 2906–2924 (2021)

    Article  CAS  Google Scholar 

  10. M.C. Wu, H.C. Liao, Y. Chou, C.P. Hsu, W.C. Yen, C.M. Chuang, W.F. Su, Manipulation of nanoscale phase separation and optical properties of P3HT/PMMA polymer blends for photoluminescent electron beam resist. J. Phys. Chem. B 114(32), 10277–10284 (2010)

    Article  CAS  Google Scholar 

  11. G. Zhang, H. Yang, L. He, L. Hu, S. Lan, F. Li, T. Guo, Importance of domain purity in semi-conducting polymer/insulating polymer blends transistors. J. Polym. Sci., Part B. Polym. Phys. 54(17), 1760–1766 (2016)

    Article  CAS  Google Scholar 

  12. G. Lu, J. Blakesley, S. Himmelberger, P. Pingel, J. Frisch, I. Lieberwirth, D. Neher, Moderate doping leads to high performance of semiconductor/insulator polymer blend transistors. Nat. Commun. 4(1), 1–8 (2013)

    CAS  Google Scholar 

  13. D. Banerjee, A.K. Kar, Influence of polaron doping and concentration dependent FRET on luminescence of PAni–PMMA blends for application in PLEDs. Phys. Chem. Chem. Phys. 20(35), 23055–23071 (2018)

    Article  CAS  Google Scholar 

  14. Y. Li, S. Yan, X. Jia, J. Wu, J. Yang, C. Zhao, X. Yang, Uncovering the origin of full-spectrum visible-light-responsive polypyrrole supramolecular photocatalysts. Appl. Catal. B. Environ. 287, 119926 (2021)

    Article  CAS  Google Scholar 

  15. D.P. Dubal, S.V. Patil, A.D. Jagadale, C.D. Lokhande, Two step novel chemical synthesis of polypyrrole nanoplates for supercapacitor application. J. Alloy. Compd. 509(32), 8183–8188 (2011)

    Article  CAS  Google Scholar 

  16. R.K. Sharma, A.C. Rastogi, S.B. Desu, Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor. Electrochem. Commun. 10(2), 268–272 (2008)

    Article  CAS  Google Scholar 

  17. J. Xia, L. Chen, S. Yanagida, Application of polypyrrole as a counter electrode for a dye-sensitized solar cell. J. Mater. Chem. 21(12), 4644–4649 (2011)

    Article  CAS  Google Scholar 

  18. S.M. Ashraf, S. Ahmad, U. Riaz, Pseudothermoset blends of poly (methyl methacrylate) and polypyrrole morphological, thermal, and conductivity studies. J. Appl. Polym. Sci. 93(1), 82–91 (2004)

    Article  CAS  Google Scholar 

  19. M. Omastová, J. Pavlinec, J. Pionteck, F. Simon, S. Košina, Chemical preparation and characterization of conductive poly (methyl methacrylate)/polypyrrole composites. Polymer 39(25), 6559–6566 (1998)

    Article  Google Scholar 

  20. P. Dutta, S.K. De, Electrical properties of polypyrrole doped β-naphthalenesulfonic acid and polypyrrole-polymethylmethacrylate blends. Synth. Met. 139(2), 201–206 (2003)

    Article  CAS  Google Scholar 

  21. J. Jang, J.H. Oh, Fabrication of a highly transparent conductive thin film from polypyrrole/poly (methyl methacrylate) core/shell nanospheres. Adv. Func. Mater. 15(3), 494–502 (2005)

    Article  CAS  Google Scholar 

  22. A. Elahi, M. Irfan, M. Munawar, M. Qasim, K. Mahmood, M. Saeed, A. Ali, Study on conductivity and dielectric behavior of chemically synthesized polypyrrol dodecylbenzene sulfonic acid blended with poly (methyl methacrylate). Polym. Sci. Ser. A 58(3), 429–437 (2016)

    Article  CAS  Google Scholar 

  23. M.E. Achour, A. Droussi, S. Zoulef, F. Gmati, A. Fattoum, A.B. Mohamed, H. Zangar, Electrical conductivity of polypyrrole–polymethylmethacrylate composites determined by impedance spectroscopy. Spectrosc. Lett. 41(6), 299–304 (2008)

    Article  CAS  Google Scholar 

  24. S. Dey, A.K. Kar, Enhanced photoluminescence through Forster resonance energy transfer in Polypyrrole-PMMA blends for application in optoelectronic devices. Mater Sci Semicon. Process. 103, 104644 (2019)

    Article  CAS  Google Scholar 

  25. M. Šetka, R. Calavia, L. Vojkůvka, E. Llobet, J. Drbohlavova, S. Vallejos, Raman and XPS studies of ammonia sensitive polypyrrolenanorods and nanoparticles. Sci. Rep. 9(1), 1–10 (2019)

    Article  Google Scholar 

  26. K.J. Thomas, M. Sheeba, V.P.N. Nampoori, C.P.G. Vallabhan, P. Radhakrishnan, Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser. J. Opt. A. Pure Appl. Op. 10(5), 055303 (2008)

    Article  Google Scholar 

  27. D.B. Menezes, A. Reyer, A. Benisek, E. Dachs, C. Pruner, M. Musso, Raman spectroscopic insights into the glass transition of poly (methyl methacrylate). Phys. Chem. Chem. Phys. 23(2), 1649–1665 (2021)

    Article  Google Scholar 

  28. S. Van Reenen, M.V. Vitorino, S.C.J. Meskers, R.A.J. Janssen, M. Kemerink, Photoluminescence quenching in films of conjugated polymers by electrochemical doping. Phys. Rev. B 89(20), 205206 (2014)

    Article  Google Scholar 

  29. M. Lunz, A.L. Bradley, V.A. Gerard, S.J. Byrne, Y.K. Gun’ko, V. Lesnyak, N. Gaponik, Concentration dependence of Förster resonant energy transfer between donor and acceptor nanocrystal quantum dot layers: effect of donor-donor interactions. Phys. Rev. B 83(11), 115423 (2011)

    Article  Google Scholar 

  30. C.S. McCamy, Correlated color temperature as an explicit function of chromaticity coordinates. Color Res. Appl. 17(2), 142–144 (1992)

    Article  Google Scholar 

  31. D.D.S. Pereira, A.P. Monkman, Methods of analysis of organic light emitting diodes. Disp. Imaging 2, 323–337 (2017)

    Google Scholar 

  32. U. Mitschke, P. Bäuerle, The electroluminescence of organic materials. J. Mater. Chem. 10(7), 1471–1507 (2000)

    Article  CAS  Google Scholar 

  33. Y.C. Pu, Y.J. Hsu, Multicolored Cd 1–x Zn x Se quantum dots with type-I core/shell structure: single-step synthesis and their use as light emitting diodes. Nanoscale 6(7), 3881–3888 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to CRF, IIT(ISM) Dhanbad, for providing the facility of FESEM and UV–Vis absorption spectrophotometry. They acknowledge MNIT Jaipur for Raman spectroscopy facility. They are also thankful to DST-FIST facility (Project No. SR/FST/PSI-004/2013) for allowing us to use lifetime spectrometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smita Dey.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S., Kar, A.K. Effect of PPy concentration on the photoluminescence of PPy–PMMA blends: observation of acceptor concentration-dependent FRET. J Mater Sci: Mater Electron 33, 9018–9030 (2022). https://doi.org/10.1007/s10854-021-07092-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07092-x

Navigation