Skip to main content
Log in

Excellent surface enhanced Raman properties of titanate nanotube-dopamine-Ag triad through efficient substrate design and LSPR matching

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, a novel triad nanocomposites containing trititanate nanotubes, Ag nanoparticles and dopamine were prepared and the SERS properties were measured experimentally. Control over the size and position of the Ag nanoparticles in the TiNT-dop-Ag system, along with the localised surface plasmon resonance (LSPR) of the Ag particles matching the Raman excitation wavelength, gives a SERS enhancement greater than 6 orders of magnitude. Electromagnetic modelling was used to provide a theoretical basis for these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Supporting information available.

References

  1. J.R. Lombardi, R.L. Birke, Acc. Chem. Res. 42, 734–742 (2009)

    Article  CAS  Google Scholar 

  2. S. Schlucker, Surface Enhanced Raman Spectroscopy (Wiley, Weinheim, 2011)

    Google Scholar 

  3. M. Mulvihill, A. Tao, K. Benjauthrit, J. Arnold, P. Yang, Angew. Chem. Int. Ed. 47, 6456–6460 (2008)

    Article  CAS  Google Scholar 

  4. D. Graham, M. Moskovits, Z.W. Tian, Chem. Soc. Rev. 46, 3864–3865 (2017)

    Article  CAS  Google Scholar 

  5. K. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir 14, 3160–3163 (1998)

    Article  CAS  Google Scholar 

  6. A. Thorne, A. Kruth, D. Tunstall, J.T.S. Irvine, W. Zhou, J. Phys. Chem. B 109, 5439–5444 (2005)

    Article  CAS  Google Scholar 

  7. Q. Chen, W. Zhou, G. Du, L.-M. Peng, Adv. Mater. 14, 1208–1211 (2002)

    Article  CAS  Google Scholar 

  8. S. Zhang, L.-M. Peng, Q. Chen, G.H. Du, G. Dawson, W. Zhou, Phys. Rev. Lett. 91, 256103 (2003)

    Article  CAS  Google Scholar 

  9. D.V. Bavykin, J.M. Friedrich, F.C. Walsh, Adv. Mater. 18, 2807–2824 (2006)

    Article  CAS  Google Scholar 

  10. I. Song, H. Lee, D.H. Kim, ACS Appl. Mater. Interfaces 10, 42249–42257 (2018)

    Article  CAS  Google Scholar 

  11. X. Zhao, Y. Lei, G. Liu, L. Qian, X. Zhang, Y. Ping, H. Li, Q. Han, P. Fang, C. He, RSC Adv. 10, 38715–38726 (2020)

    Article  CAS  Google Scholar 

  12. J.Z. Wang, J.P. Zhou, Z.Q. Guo, Y.X. Lei, Q.U. Hassan, Cryst. Res. Technol. 53, 1700153 (2018)

    Article  Google Scholar 

  13. H. Li, J. Xi, A.G. Donaghue, J. Keum, Y. Zhao, K. An, E.R. McKenzie, F. Ran, Sci. Rep. 10, 10416 (2020)

    Article  CAS  Google Scholar 

  14. R. Liu, X. Fu, C. Wang, G. Dawson, Chem. Eur. J. 22, 6071–6074 (2016)

    Article  CAS  Google Scholar 

  15. Y. Xie, Y. Meng, RSC Adv. 4, 41734–41743 (2014)

    Article  CAS  Google Scholar 

  16. S.C. Xu, Y.X. Zhang, Y.Y. Luo, S. Wang, H.L. Ding, J.M. Xu, G.H. Li, Analyst 138, 4519–4525 (2013)

    Article  CAS  Google Scholar 

  17. Q.Y. Wang, J.S. Zhong, M. Zhang, D.Q. Chen, Z.G. Ji, Mat. Lett. 182, 163–167 (2016)

    Article  CAS  Google Scholar 

  18. Y. Chen, G. Tian, K. Pan, C. Tian, J. Zhou, W. Zhou, Z. Ren, H. Fu, Dalton Trans. 41, 1020–1026 (2012)

    Article  CAS  Google Scholar 

  19. R. Liu, E. Morris, X. Cheng, E. Amigues, K. Lau, B. Kim, Y. Liu, Z. Ke, S.E. Ashbrook, M. Bühl, G. Dawson, ChemistrySelect 3, 8338–8343 (2018)

    Article  CAS  Google Scholar 

  20. A. Centeno, F. Xie, N. Alford, IET Nanobiotechnol. 7, 50–58 (2013)

    Article  CAS  Google Scholar 

  21. A.F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J.D. Joannopoulos, S.G. Johnson, A. Meep, Comput. Phys. Commun. 181, 687–702 (2010)

    Article  CAS  Google Scholar 

  22. Y. Cong, T. Xia, M. Zou, Z. Li, B. Peng, D. Guo, Z. Deng, J. Mater. Chem. B 2, 3450–3461 (2014)

    Article  CAS  Google Scholar 

  23. A. Crake, K.C. Christoforidis, R. Godin, B. Moss, A. Kafizas, S. Zafeiratos, J.R. Durrant, C. Petit, Appl. Catal. B 242, 369–378 (2019)

    Article  CAS  Google Scholar 

  24. D.V. Bavykin, J.M. Friedrich, A.A. Lapkin, F.C. Walsh, Chem. Mat. 18, 1124–1129 (2006)

    Article  CAS  Google Scholar 

  25. S.-Y. Ding, E.-M. You, Z.-Q. Tian, M. Moskovits, Chem. Soc. Rev. 46, 4042–4076 (2017)

    Article  CAS  Google Scholar 

  26. L. Yang, Q. Sang, J. Du, M. Yang, X. Li, Y. Shen, X. Han, X. Jiang, B. Zhao, Phys. Chem. Chem. Phys. 20, 15149–15157 (2018)

    Article  CAS  Google Scholar 

  27. G.V. Hartland, L.V. Besteiro, P. Johns, A.O. Govorov, ACS Energy Lett. 2, 1641–1653 (2017)

    Article  CAS  Google Scholar 

  28. C. Clavero, Nat. Photonics 8, 95–103 (2014)

    Article  CAS  Google Scholar 

  29. X. Cheng, S. Gu, A. Centeno, G. Dawson, Sci. Rep. 9, 5140 (2019)

    Article  Google Scholar 

  30. A. Centeno, A. Bader, H. Reehal, F. Xie, Nanotechnology 24, 415402 (2013)

    Article  Google Scholar 

Download references

Funding

This work was supported by Suzhou Institute of Industrial Technology Research Fund (Grant Nos. SGYKJ201705 and 2017kyqd010), Xi'an Jiaotong Liverpool University Research Development Fund and Key Programme Special Fund in XJTLU (KSF-E-02).

Author information

Authors and Affiliations

Authors

Contributions

GD, XC and AC contributed to the conception and design of the study. FDTD calculations were performed by AC. Experiments were performed by WN, YP and RL. Manuscript was written by GD and AC and commented upon by all authors.

Corresponding author

Correspondence to Graham Dawson.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dawson, G., Cheng, X., Centeno, A. et al. Excellent surface enhanced Raman properties of titanate nanotube-dopamine-Ag triad through efficient substrate design and LSPR matching. J Mater Sci: Mater Electron 32, 21603–21610 (2021). https://doi.org/10.1007/s10854-021-06669-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06669-w

Navigation