Skip to main content
Log in

Charge ordering and magnetic properties of LaxSm0.5-xCa0.5MnO3 manganite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, the effect of La3+ doping on the structure, charge ordering and magnetic properties of Sm0.5Ca0.5MnO3 manganite has been studied. A series of LaxSm0.5-xCa0.5MnO3 (x = 0, 0.25, 0.375, 0.5) samples are prepared by traditional solid state reaction. The crystal structures are studied by X-ray diffraction technology. The results show that they are single-phase and orthorhombic structures. The change of La3+ ion concentration does not change the crystal structure of the samples. The surface morphology and particle size of the samples are studied by scanning electron microscope. The average particle size of the samples is several micrometers. Energy-dispersive spectrometer is used to detect the composition of the samples. The results show that the actual element composition of the samples is consistent with that of the modulated element. Magnetic properties are analyzed by magnetization versus temperature (M–T) curves and magnetic hysteresis (M-H) loops. Below 50 K, the zero-field-cooling (ZFC) and field-cooling (FC) M–T curves diverge obviously, which is a typical feature of spin glass transition. The ZFC and FC M–T curves show a significant protuberance peak between 215 and 274 K, which represents the existence of charge-ordered (CO) anti-ferromagnetic (AFM) state. With increasing La3+ ion doping concentration, the CO temperature gradually decreases. Moreover, the butterfly-type M-H loops also confirm the existence of CO-AFM phase in samples. In a few words, the competition between FM and AFM phases determines the charge ordering behavior and magnetic properties of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.J. Millis, P.B. Littlewood, B.I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995)

    Article  CAS  Google Scholar 

  2. E. Dagotto, Science 309, 257 (2005)

    Article  CAS  Google Scholar 

  3. H. Wang, W. Tan, AIP Adv. 10, 095113 (2020)

    Article  CAS  Google Scholar 

  4. G.H. Jonker, J.H. Van Santen, Physica 16, 337 (1950)

    Article  CAS  Google Scholar 

  5. P.-G. de Gennes, Phys. Rev. 118, 141 (1960)

    Article  Google Scholar 

  6. J.M. De Teresa, M.R. Ibarra, J. García, J. Blasco, C. Ritter, P.A. Algarabel, C. Marquina, A. del Moral, Phys. Rev. Lett. 76, 3392 (1996)

    Article  Google Scholar 

  7. R. Suryanarayanan, A. Vasil Év, T. Voloshok, J. Magnet. Magnet. Mater. 242–245, 695 (2002)

    Article  Google Scholar 

  8. A. Srivastava, R. Thakur, N.K. Gaur, AIP Conf Proc. 1536, 913–914 (2013)

    Article  CAS  Google Scholar 

  9. J. Lo´pez, O.F. de Lima, P.N. Lisboa-Filho, F.M. Araujo-Moreira, Phys. Rev. B. 66, 214402 (2002)

    Article  Google Scholar 

  10. T. Terai, T. Sasaki, T. Kakeshita, T. Fukuda, T. Saburi et al., Phys. Rev. B 61, 3488–93 (2000)

    Article  CAS  Google Scholar 

  11. Liu, Z.Z. Qiu, D.Z. Hou, J. Barker, K. Yamamoto, O. Gomonay, E. Sai Toh, Nat. Mater. 17, 577 (2018)

    Article  Google Scholar 

  12. R.W. Li, Z.H. Wang, X. Chen, B.G. Shen, Acta. Phys. Sin. 48, S105 (1999). ((in Chinese))

    Google Scholar 

  13. H. Wang, H. Zhang, Su. Kunpeng, S. Huang, W. Tan, D. Huo, J. Mater. Sci.: Mater. Electron. 31, 14421 (2020)

    CAS  Google Scholar 

  14. H.O. Wang, K.P. Su, S. Huang, J. Ge, W.S. Tan, D.X. Huo, J. Superconduct. Novel Magnet. 32, 3887 (2019)

    Article  CAS  Google Scholar 

  15. S.P. Wang, J.C. Zhang, G.X. Cao, J. Yu, C. Jing, S.X. Cao, Chin. Phys. Soc. 55, 370 (2006). ((in Chinese))

    Google Scholar 

  16. P.G. Radaelli, D.E. Cox, M. Marezio, S.W. Cheong, Phys. Rev. B 55, 3015 (1997)

    Article  CAS  Google Scholar 

  17. Z. Ma, Hu. Ming Yue, Z.Y. Liu, K. Wei, H. Guan, H. Lin, M. Shen, S. An, Wu. Qiong, S. Sun, J. Am. Chem. Soc. 142, 8440–8446 (2020)

    Article  CAS  Google Scholar 

  18. A.P. Ramirez, P. Schiffer, S.W. Cheong, C.H. Chen, W. Bao, T.T.M. Palstra, B. Zegarski, P.L. Gammel, D.J. Bishop, Phys. Rev. Lett. 76, 3188 (1996)

    Article  CAS  Google Scholar 

  19. Y. Tomioka, T. Okuda, Y. Okimoto, A. Asamitsu, H. Kuwahara, Y. Tokura, J. Alloy. Compd. 326, 27 (2001)

    Article  CAS  Google Scholar 

  20. J.A. De Toro, Phys. Rev. B 60, 12918 (1999)

    Article  Google Scholar 

  21. H. Maniya, I. Nakatani, T. Furnbayashi, Phys. Rev. Lett. 80, 177 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11604067, U1832143, 51702289, 51601049, 11704091). The authors would like to thank colleagues from Beijing Synchrotron Radiation Facility (BSRF) and Shanghai Synchrotron Radiation Facility (SSRF) for their help in XRD experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiou Wang or Weishi Tan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, H., Wang, H. et al. Charge ordering and magnetic properties of LaxSm0.5-xCa0.5MnO3 manganite. J Mater Sci: Mater Electron 32, 18721–18727 (2021). https://doi.org/10.1007/s10854-021-06391-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06391-7

Navigation