Skip to main content

Advertisement

Log in

Down-conversion and structural characterizations of trivalent terbium-doped garnet nanocrystalline phosphors for lighting applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanocrystalline green-emitting Tb3+-doped Y3Al5O12 (garnet) nanophosphors were synthesized via an efficient and economical solution combustion route using hexamethylenetetramine (C6H12N4) as a fuel. The samples were synthesized at 500 °C and calcined at 650, 950 and 1050 °C for further analysis. The structural and lattice parameters for both undoped and Tb3+-doped Y3Al5O12 materials were determined by Rietveld refinement using diffraction data. The pure crystalline phase of YAG:Tb3+ having a cubic unit cell with Ia\( \overline{{3\text{d}}} \) space group was obtained at 500 °C without the presence of intermediate phases like YAlO3 and Y4Al2O9. FTIR analysis proposed the presence of different bands corresponding to AlO4 tetrahedra and AlO6 octahedra supporting the XRD measurements. The synthesis of nanocrystalline materials with slightly agglomerated particles with narrow size distribution was confirmed by transmission electron microscope (TEM). Energy dispersive X-ray (EDX) examination confirmed the synthesis of desired samples with the existence of components coordinated inside the crystalline host. The phosphors yielded bright emission in the green region owing to the 5D4 → 7F5 (544 nm) transition at λex = 267 nm. Critical distance affirmed that the transfer of energy happens by means of the multipolar association phenomenon. The down-conversion and structural investigations support the convenient utility of Y3Al5O12:Tb3+ materials in solid-state lighting and other optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C. Liu, S. Pokhrel, C. Tessarek, H. Li, M. Schowalter, A. Rosenauer, M. Eickhoff, S. Li, L. Mädler, A.C.S. Appl, Nano Mater. 3, 699 (2020)

    CAS  Google Scholar 

  2. H.R. Shih, Y.S. Chang, Materials (Basel) 10, 1 (2017)

    Article  CAS  Google Scholar 

  3. K.W. Huang, W.T. Chen, C.I. Chu, S.F. Hu, H.S. Sheu, B.M. Cheng, J.M. Chen, R.S. Liu, Chem. Mater. 24, 2220 (2012)

    Article  CAS  Google Scholar 

  4. Z. Yang, D. Xu, J. Sun, Y. Sun, H. Du, Opt. Eng. 54, 105102 (2015)

    Article  Google Scholar 

  5. D. Singh, S. Sheoran, V. Tanwar, S. Bhagwan, J. Mater. Sci. Mater. Electron. 28, 3243 (2017)

    Article  CAS  Google Scholar 

  6. A. Raja, G. Annadurai, D. Joseph Daniel, P. Ramasamy, J. Alloys Compd. 683, 654 (2016)

    Article  CAS  Google Scholar 

  7. I.E. Kolesnikov, A.A. Kalinichev, M.A. Kurochkin, E.V. Golyeva, A.S. Terentyeva, E.Y. Kolesnikov, E. Lähderanta, Sci. Rep. 9, 1 (2019)

    Article  CAS  Google Scholar 

  8. S. Singh, V. Tanwar, A.P. Simantilleke, D. Singh, Nano-Struct. Nano-Objects 21, 100427 (2020)

    Article  CAS  Google Scholar 

  9. L. Sun, B. Devakumar, J. Liang, S. Wang, Q. Sun, X. Huang, J. Mater. Chem. C 7, 10471 (2019)

    Article  CAS  Google Scholar 

  10. S. Kadyan, S. Singh, S. Sheoran, A. Samantilleke, B. Mari, D. Singh, J. Mater. Sci. Mater. Electron. 31, 414 (2020)

    Article  CAS  Google Scholar 

  11. L. Tian, L. Wang, L. Zhang, Q. Zhang, W. Ding, M. Yu, J. Mater. Sci. Mater. Electron. 26, 8507 (2015)

    Article  CAS  Google Scholar 

  12. H.K. Yang, J.H. Jeong, J. Phys. Chem. C 114, 226 (2010)

    Article  CAS  Google Scholar 

  13. S. Singh, D. Singh, J. Mater. Sci. Mater. Electron. 31, 5165 (2020)

    Article  CAS  Google Scholar 

  14. D. Singh, S. Kadyan, J. Mater. Sci. Mater. Electron. 28, 11142 (2017)

    Article  CAS  Google Scholar 

  15. C. Liang, H. You, Y. Fu, X. Teng, K. Liu, J. He, Dalt. Trans. 44, 8100 (2015)

    Article  CAS  Google Scholar 

  16. L. Xia, Q. Xiao, X. Ye, W. You, T. Liang, J. Am. Ceram. Soc. 102, 2053 (2019)

    Article  CAS  Google Scholar 

  17. K.A. Denault, J. Brgoch, M.W. Gaultois, A. Mikhailovsky, R. Petry, H. Winkler, S.P. Denbaars, R. Seshadri, Chem. Mater. 26, 2275 (2014)

    Article  CAS  Google Scholar 

  18. S. Chemingui, M. Ferhi, K. Horchani-Naifer, M. Férid, J. Lumin. 166, 82 (2015)

    Article  CAS  Google Scholar 

  19. J. Long, Y. Wang, R. Ma, C. Ma, X. Yuan, Z. Wen, M. Du, Y. Cao, Inorg. Chem. 56, 3269 (2017)

    Article  CAS  Google Scholar 

  20. A. Lupei, V. Lupei, C. Gheorghe, A. Ikesue, M. Enculescu, J. Appl. Phys. 110, 083120 (2011)

    Article  CAS  Google Scholar 

  21. Z. Mu, Y. Hu, L. Chen, X. Wang, J. Lumin. 131, 1687 (2011)

    Article  CAS  Google Scholar 

  22. U. Fawad, I. Gul, H.J. Kim, W. Muhammad, M. Khan, Bull. Mater. Sci. 43, 3 (2020)

    Article  CAS  Google Scholar 

  23. S. Kadyan, S. Singh, S. Sheoran, A. Samantilleke, B. Mari, D. Singh, Optik (Stuttg). 204, 164159 (2020)

    Article  CAS  Google Scholar 

  24. A. Varma, A.S. Mukasyan, A.S. Rogachev, K.V. Manukyan, Chem. Rev. 116, 14493 (2016)

    Article  CAS  Google Scholar 

  25. D. Singh, S. Kadyan, S. Bhagwan, J. Mater. Sci. Mater. Electron. 28, 13478 (2017)

    Article  CAS  Google Scholar 

  26. R. Martín-Rodríguez, R. Valiente, S. Polizzi, M. Bettinelli, A. Speghini, F. Piccinelli, J. Phys. Chem. C 113, 12195 (2009)

    Article  CAS  Google Scholar 

  27. A. Birkel, K.A. Denault, N.C. George, C.E. Doll, B. Héry, A.A. Mikhailovsky, C.S. Birkel, B.C. Hong, R. Seshadri, Chem. Mater. 24, 1198 (2012)

    Article  CAS  Google Scholar 

  28. S. Singh, I. Gupta, D. Singh, Optik (Stuttg). 238, 166482 (2021)

    Article  CAS  Google Scholar 

  29. G. He, L. Mei, L. Wang, G. Liu, J. Li, Cryst. Growth Des. 11, 5355 (2011)

    Article  CAS  Google Scholar 

  30. S. Wang, H. Gao, J. Li, Y. Wang, C. Chen, X. Yu, S. Tang, X. Zhao, G. Sun, D. Li, J. Phys. Chem. Solids. 150, 109891 (2021)

    Article  CAS  Google Scholar 

  31. J. Li, S. Wang, G. Sun, H. Gao, X. Yu, S. Tang, X. Zhao, Z. Yi, Y. Wang, Y. Wei, Mater. Today Chem. 19, 100390 (2021)

    Article  CAS  Google Scholar 

  32. D. Zhao, F.X. Ma, Y.C. Fan, L. Zhang, R.J. Zhang, P.G. Duan, Dalt. Trans. 46, 8673 (2017)

    Article  CAS  Google Scholar 

  33. S. Singh, V. Tanwar, A.P. Simantilleke, H. Kumar, D. Singh, Optik (Stuttg). 221, 165364 (2020)

    Article  CAS  Google Scholar 

  34. G. Xia, S. Zhou, J. Zhang, S. Wang, J. Xu, J. Alloys Compd. 421, 294 (2006)

    Article  CAS  Google Scholar 

  35. X. Li, Y. Zhang, D. Geng, J. Lian, G. Zhang, Z. Hou, J. Lin, J. Mater. Chem. C 2, 9924 (2014)

    Article  CAS  Google Scholar 

  36. R. Priya, A. Negi, S. Singla, O.P. Pandey, Optik (Stuttg). 204, 164173 (2020)

    Article  CAS  Google Scholar 

  37. H. Jing, C. Guo, G. Zhang, X. Su, Z. Yang, J.H. Jeong, J. Mater. Chem. 22, 13612 (2012)

    Article  CAS  Google Scholar 

  38. N. Zhang, C. Guo, J. Zheng, X. Su, J. Zhao, J. Mater. Chem. C 2, 3988 (2014)

    Article  CAS  Google Scholar 

  39. C. Mansuy, C. Dujardin, R. Mahiou, J.M. Nedelec, Opt. Mater. (Amst). 21, 468 (2009)

    Google Scholar 

  40. S. Singh, A.P. Simantilleke, D. Singh, Optik (Stuttg). 221, 165324 (2020)

    Article  CAS  Google Scholar 

  41. K.Y. Jung, C.H. Lee, Y.C. Kang, Mater. Lett. 59, 2451 (2005)

    Article  CAS  Google Scholar 

  42. E. Pavitra, G.S.R. Raju, Y.H. Ko, J.S. Yu, Phys. Chem. Chem. Phys. 14, 11296 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Sitender Singh would be appreciative to Council of Scientific & Industrial Research, New Delhi, India for the financial help furnished as senior research fellowship having Authorization No. [09/382(0194)/2017-EMR-I].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devender Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Singh, D. Down-conversion and structural characterizations of trivalent terbium-doped garnet nanocrystalline phosphors for lighting applications. J Mater Sci: Mater Electron 32, 17674–17685 (2021). https://doi.org/10.1007/s10854-021-06303-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06303-9

Navigation