Skip to main content
Log in

Ammonia room-temperature gas sensor using different TiO2 nanostructures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, three different TiO2 nanostructures, including nanowires, nanoparticles, and thin films, were synthesized by three different processes. The morphology and crystal structure of the three different TiO2 structures deposited on quartz glasses were characterized by XRD, SEM, FTIR, and BET. It has been found that nanowires and nanoparticles showed only the anatase phase, while the thin films exhibited both anatase and rutile phases. The three TiO2 nanostructures were then used to fabricate gas sensors for ammonia (NH3) detection at different concentrations and various conditions. The samples fabricated with TiO2 thin film toward 50 ppm NH3 showed a response value of 5% at room temperature, whereas the other two samples exhibited much higher values toward similar condition NH3 at room temperature. Samples with nanowires showed a threefold increase and samples with nanoparticles exhibit a twofold increase in response value. We have found that the response of all samples increases with the elevating operating temperature up to 200 °C. Increasing the operating temperature improved the nanoparticle sensing conditions more than the other two samples. The samples using nanoparticles showed a 33% increase in response toward 50 ppm NH3 at 200 °C compared to the samples with thin films at similar conditions. Further, response and recovery time were investigated and reported in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Dey, Semiconductor metal oxide gas sensors: a review. Mater. Sci. Eng., B 229, 206–217 (2018)

    Article  CAS  Google Scholar 

  2. M. Hadiyan, A. Salehi, A. Koohi-Saadi, Sub-ppm acetone gas sensing properties of free-standing ZnO nanorods. J. Electroceram. 42, 147–155 (2019)

    Article  CAS  Google Scholar 

  3. C. De Pascali, M.A. Signore, A. Taurino, L. Francioso, A. Macagnano, J. Avossa et al., Investigation of the gas-sensing performance of electrospun TiO2 nanofiber-based sensors for ethanol sensing. IEEE Sens. J. 18, 7365–7374 (2018)

    Article  Google Scholar 

  4. M. Shooshtari, A. Salehi, S. Vollebregt, Effect of humidity on gas sensing performance of carbon nanotube gas sensors operated at room temperature. IEEE Sens. J. 21, 5763–5770 (2020)

    Article  Google Scholar 

  5. J. Zhang, X. Liu, G. Neri, N. Pinna, Nanostructured materials for room-temperature gas sensors. Adv. Mater. 28, 795–831 (2016)

    Article  CAS  Google Scholar 

  6. M.-H. Seo, M. Yuasa, T. Kida, J.-S. Huh, K. Shimanoe, N. Yamazoe, Gas sensing characteristics and porosity control of nanostructured films composed of TiO2 nanotubes. Sens. Actuators B 137, 513–520 (2009)

    Article  CAS  Google Scholar 

  7. Salehi A, Kalantari D J, Goshtasbi A (2006) Rapid response of Au/porous-GaAs humidity sensor at room temperature in 2006 Conference on optoelectronic and microelectronic materials and devices, pp 125-128

  8. V. Galstyan, E. Comini, C. Baratto, G. Faglia, G. Sberveglieri, Nanostructured ZnO chemical gas sensors. Ceram. Int. 41, 14239–14244 (2015)

    Article  CAS  Google Scholar 

  9. B. Yuliarto, L. Nulhakim, M.F. Ramadhani, M. Iqbal, A. Nuruddin, Improved performances of ethanol sensor fabricated on Al-doped ZnO nanosheet thin films. IEEE Sens. J. 15, 4114–4120 (2015)

    Article  Google Scholar 

  10. P.T. Moseley, Progress in the development of semiconducting metal oxide gas sensors: a review. Meas. Sci. Technol. 28, 082001 (2017)

    Article  CAS  Google Scholar 

  11. A. Aoboun, B. Cherdhirunkorn, C. Pechyen, Development of screen printed electrode using MWCNTs–TiO2 nanocomposite as a low-cost device for uric acid detection in urine. J. Mater. Sci. 30, 2403–2412 (2019)

    CAS  Google Scholar 

  12. S. Sakib, R. Pandey, L. Soleymani, I. Zhitomirsky, Surface modification of TiO2 for photoelectrochemical DNA biosensors. Med. Devices Sens. 3, e10066 (2020)

    Article  Google Scholar 

  13. S. Wategaonkar, R. Pawar, V. Parale, D. Nade, B. Sargar, R. Mane, Synthesis of rutile TiO2 nanostructures by single step hydrothermal route and its characterization. Mater. Today 23, 444–451 (2020)

    CAS  Google Scholar 

  14. I. Cappelli, A. Fort, A. Lo Grasso, E. Panzardi, M. Mugnaini, V. Vignoli, RH sensing by means of TiO2 Nanoparticles: a comparison among different sensing techniques based on modeling and chemical/physical interpretation. Chemosensors 8, 89 (2020)

    Article  CAS  Google Scholar 

  15. P. Karthik, P. Gowthaman, M. Venkatachalam, A. Rajamanickam, Propose of high performance resistive type H2S and CO2 gas sensing response of reduced graphene oxide/titanium oxide (rGO/TiO2) hybrid sensors. J. Mater. Sci. 31, 3695–3705 (2020)

    CAS  Google Scholar 

  16. V. Ganbavle, S. Inamdar, G. Agawane, J. Kim, K. Rajpure, Synthesis of fast response, highly sensitive and selective Ni: ZnO based NO2 sensor. Chem. Eng. J. 286, 36–47 (2016)

    Article  CAS  Google Scholar 

  17. X. Chen, A. Selloni, Introduction: Titanium Dioxide (TiO2) Nanomaterials (ACS Publications, Washington, 2014).

    Google Scholar 

  18. B. Comert, N. Akin, M. Donmez, S. Saglam, S. Ozcelik, Titanium dioxide thin films as methane gas sensors. IEEE Sens. J. 16, 8890–8896 (2016)

    Article  CAS  Google Scholar 

  19. E. Bet-Moushoul, Y. Mansourpanah, K. Farhadi, M. Tabatabaei, TiO2 nanocomposite based polymeric membranes: a review on performance improvement for various applications in chemical engineering processes. Chem. Eng. J. 283, 29–46 (2016)

    Article  CAS  Google Scholar 

  20. Z. Li, Z. Yao, A.A. Haidry, T. Plecenik, L. Xie, L. Sun et al., Resistive-type hydrogen gas sensor based on TiO2: a review. Int. J. Hydrog Energy 43, 21114–21132 (2018)

    Article  CAS  Google Scholar 

  21. O. Krško, T. Plecenik, T. Roch, B. Grančič, L. Satrapinskyy, M. Truchlý et al., Flexible highly sensitive hydrogen gas sensor based on a TiO2 thin film on polyimide foil. Sens. Actuators B 240, 1058–1065 (2017)

    Article  CAS  Google Scholar 

  22. X. Zhou, Y. Wang, J. Wang, Z. Xie, X. Wu, N. Han et al., Amplifying the signal of metal oxide gas sensors for low concentration gas detection. IEEE Sens. J. 17, 2841–2847 (2017)

    Article  CAS  Google Scholar 

  23. B. Lyson-Sypien, M. Radecka, M. Rekas, K. Swierczek, K. Michalow-Mauke, T. Graule et al., Grain-size-dependent gas-sensing properties of TiO2 nanomaterials. Sens. Actuators B 211, 67–76 (2015)

    Article  CAS  Google Scholar 

  24. G. Eranna, B. Joshi, D. Runthala, R. Gupta, Oxide materials for development of integrated gas sensors—a comprehensive review. Crit. Rev. Solid State Mater. Sci. 29, 111–188 (2004)

    Article  CAS  Google Scholar 

  25. H. Wu, Z. Ma, Z. Lin, H. Song, S. Yan, Y. Shi, High-sensitive ammonia sensors based on tin monoxide nanoshells. Nanomaterials 9, 388 (2019)

    Article  CAS  Google Scholar 

  26. M. Hakimi, A. Salehi, F. Boroumand, N. Mosleh, Fabrication of a room temperature ammonia gas sensor based on polyaniline with N-doped graphene quantum dots. IEEE Sens. J. 18, 2245–2252 (2018)

    Article  CAS  Google Scholar 

  27. J.N. Gavgani, A. Hasani, M. Nouri, M. Mahyari, A. Salehi, Highly sensitive and flexible ammonia sensor based on S and N co-doped graphene quantum dots/polyaniline hybrid at room temperature. Sens. Actuators B 229, 239–248 (2016)

    Article  CAS  Google Scholar 

  28. S.S. Al-Taweel, H.R. Saud, New route for synthesis of pure anatase TiO2 nanoparticles via ultrasound assisted sol-gel method. J. Chem. Pharm. Res. 8, 620–626 (2016)

    CAS  Google Scholar 

  29. R. Nankya, K.-N. Kim, Sol–gel synthesis and characterization of Cu–TiO2 nanoparticles with enhanced optical and photocatalytic properties. J. Nanosci. Nanotechnol. 16, 11631–11634 (2016)

    Article  CAS  Google Scholar 

  30. B.K. Mutuma, G.N. Shao, W.D. Kim, H.T. Kim, Sol–gel synthesis of mesoporous anatase–brookite and anatase–brookite–rutile TiO2 nanoparticles and their photocatalytic properties. J. Colloid Interface Sci. 442, 1–7 (2015)

    Article  CAS  Google Scholar 

  31. O. Wiranwetchayan, S. Promnopas, T. Thongtem, A. Chaipanich, S. Thongtem, Effect of alcohol solvents on TiO2 films prepared by sol–gel method. Surf. Coat. Technol. 326, 310–315 (2017)

    Article  CAS  Google Scholar 

  32. D.V. Bavykin, J.M. Friedrich, F.C. Walsh, Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications. Adv. Mater. 18, 2807–2824 (2006)

    Article  CAS  Google Scholar 

  33. P. Liu, W. Cai, M. Fang, Z. Li, H. Zeng, J. Hu et al., Room temperature synthesized rutile TiO2 nanoparticles induced by laser ablation in liquid and their photocatalytic activity. Nanotechnology 20, 285707 (2009)

    Article  CAS  Google Scholar 

  34. Y. Wu, P. Yang, Direct observation of vapor−liquid−solid nanowire growth. J. Am. Chem. Soc. 123, 3165–3166 (2001)

    Article  CAS  Google Scholar 

  35. S.K. Pradhan, P.J. Reucroft, F. Yang, A. Dozier, Growth of TiO2 nanorods by metalorganic chemical vapor deposition. J. Cryst. Growth 256, 83–88 (2003)

    Article  CAS  Google Scholar 

  36. H. Shang, G. Cao, Template-based synthesis of nanorod or nanowire arrays, in Springer handbook of nanotechnology. ed. by B. Bhushan (Springer, Berlin, 2007), pp. 161–178

    Chapter  Google Scholar 

  37. M. Ge, J. Cai, J. Iocozzia, C. Cao, J. Huang, X. Zhang et al., A review of TiO2 nanostructured catalysts for sustainable H2 generation. Int J Hydrog Energy 42, 8418–8449 (2017)

    Article  CAS  Google Scholar 

  38. M. Ferroni, V. Guidi, G. Martinelli, G. Faglia, P. Nelli, G. Sberveglieri, Characterization of a nanosized TiO2 gas sensor. Nanostruct. Mater. 7, 709–718 (1996)

    Article  CAS  Google Scholar 

  39. A. León, P. Reuquen, C. Garín, R. Segura, P. Vargas, P. Zapata et al., FTIR and Raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol. Appl. Sci. 7, 49 (2017)

    Article  CAS  Google Scholar 

  40. S. de Castro, A.F. da Silva, J.F. Felix, M.R. Piton, H.V.A. Galeti, A.D.G. Rodrigues et al., Effect of growth techniques on the structural, optical and electrical properties of indium doped TiO2 thin films. J. Alloy. Compd. 766, 194–203 (2018)

    Article  CAS  Google Scholar 

  41. G. Karunakaran, E. BumCho, Role of block copolymer template for tailoring crystal structure and band gap of titania in mesoporous silica and organosilica particles. Ceram. Int. 46, 2163–2172 (2020)

    Article  CAS  Google Scholar 

  42. M. Zulfiqar, S. Sufian, N. Mansor, N.E. Rabat, Synthesis and characterization of TiO2-based nanostructures via fluorine-free solvothermal method for enhancing visible light photocatalytic activity: experimental and theoretical approach. J. Photochem. Photobiol. A 404, 112834 (2021)

    Article  CAS  Google Scholar 

  43. Y. Kwon, H. Kim, S. Lee, I.-J. Chin, T.-Y. Seong, W.I. Lee et al., Enhanced ethanol sensing properties of TiO2 nanotube sensors. Sens. Actuators B 173, 441–446 (2012)

    Article  CAS  Google Scholar 

  44. H. Shang, M. Li, H. Li, S. Huang, C. Mao, Z. Ai et al., Oxygen vacancies promoted the selective photocatalytic removal of NO with blue TiO2 via simultaneous molecular oxygen activation and photogenerated hole annihilation. Environ. Sci. Technol. 53, 6444–6453 (2019)

    Article  CAS  Google Scholar 

  45. L. Xu, X. Ma, N. Sun, F. Chen, Bulk oxygen vacancies enriched TiO2 and its enhanced visible photocatalytic performance. Appl. Surf. Sci. 441, 150–155 (2018)

    Article  CAS  Google Scholar 

  46. S. Ramanavicius, A. Ramanavicius, Insights in the application of stoichiometric and non-stoichiometric titanium oxides for the design of sensors for the determination of gases and VOCs (TiO2−x and TinO2n−1 vs. TiO2). Sensors 20, 6833 (2020)

    Article  CAS  Google Scholar 

  47. Gwizdz P, Radecka M, Zakrzewska K (2018) Array of Gas Sensors Based on TiO2 upon Temperature Modulation in 2018 XV International scientific conference on Optoelectronic and Electronic Sensors (COE), pp 1-4

  48. C.-H. Lin, C.-H. Liao, W.-H. Chen, C.-Y. Chou, C.-Y. Liu, Fabrication of p-type TiO2 and transparent p-TiO2/n-ITO pn junctions. AIP Adv. 9, 045229 (2019)

    Article  CAS  Google Scholar 

  49. S. Lin, D. Li, J. Wu, X. Li, S. Akbar, A selective room temperature formaldehyde gas sensor using TiO2 nanotube arrays. Sens. Actuators B 156, 505–509 (2011)

    Article  CAS  Google Scholar 

  50. W. Wang, F. Liu, B. Wang, Y. Wang, Effect of defects in TiO2 nanoplates with exposed 001 facets on the gas sensing properties. Chin. Chem. Lett. 30, 1261–1265 (2019)

    Article  CAS  Google Scholar 

  51. M. Tabatabaei, H.G. Fard, J. Koohsorkhi, Low-temperature preparation of a carbon nanotube–ZnO hybrid on glass substrate for field emission applications. NANO 10, 1550040 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Shooshtari.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shooshtari, M., Salehi, A. Ammonia room-temperature gas sensor using different TiO2 nanostructures. J Mater Sci: Mater Electron 32, 17371–17381 (2021). https://doi.org/10.1007/s10854-021-06269-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06269-8

Navigation