Skip to main content

Advertisement

Log in

Fabrication of 2D g-C3N4/CdS core–shell heterojunction with effective photocatalytic activity for dye degradation and reduction of Cr(VI) under visible light

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Through a typical hydrothermal reaction, the g-C3N4/CdS core–shell nanocomposite was obtained. The prepared heterojunction was characterized by TEM, XRD, FT-IR, UV–Vis, XPS, and other analytical methods. The photocatalytic activity of g-C3N4/CdS for degradation is obviously excellent. After repeat the photocatalysis experiment five times, the photocatalytic efficiency did not decrease significantly, which is very meaningful for the application of pollutants in water. Through a series of mechanism verification experiments, a reasonable mechanism of catalyst degradation of dyes and heavy metal pollutants has been elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. U.A. Khan, J.J. Liu, J.B. Pan, H.C. Ma, S.L. Zuo, Y.C. Yu, A. Ahmad, B.S. Li, Fabrication of floating CdS/EP photocatalyst by facile liquid phase deposition for highly efficient degradation of Rhodamine B (RhB) under visible light irradiation. Mater. Sci. Semicond. Process 83, 201–210 (2018)

    Article  Google Scholar 

  2. X. Dai, M.L. Xie, S.G. Meng, X.L. Fu, S.F. Chen, Coupled systems for selective oxidation of aromatic alcohols to aldehydes and reduction of nitrobenzene into aniline using CdS/g-C3N4 photocatalyst under visible light irradiation. Appl. Catal. B Environ. 158–159, 382–390 (2014)

    Article  Google Scholar 

  3. N. Kumar, V. Dutta, Synthesis of hollow CdS micro-fnanospheres by CoSP tech-nique and their visible light photocatalytic activities. Appl. Surf. Sci. 288, 172–179 (2014)

    Article  CAS  Google Scholar 

  4. J. Liu, Origin of high photocatalytic efficiency in monolayer g-C3N4/CdS heterostructure: a hybrid DFT study. J. Phys. Chem. C 119, 28417–28423 (2015)

    Article  CAS  Google Scholar 

  5. Y. Liu, K. Yan, J. Zhang, Graphitic carbon nitride sensitized with CdS quantum dots for visible-light-driven photoelectrochemical aptasensing of tetracycline. ACS Appl. Mater. Interfaces 8, 28255–28264 (2016)

    Article  CAS  Google Scholar 

  6. J. Yao, Z. Gao, Q. Meng, G. He, H. Chen, One-step synthesis of reduced graphene oxide based ceric dioxide modified with cadmium sulfide (CeO2/CdS/RGO) heterojunction with enhanced sunlight-driven photocatalytic activity. J. Colloid Interface Sci. 594, 621–634 (2021)

    Article  CAS  Google Scholar 

  7. G. Palanisamy, K. Bhuvaneswari, G. Bharathi, T. Pazhanivel, M. Dhanalakshmi, Improved photocatalytic performance of magnetically recoverable Bi2Te3/CdS/CuFe2O4 nanocomposite for MB dye under visible light exposure. Solid State Sci. 115, 106584 (2021)

    Article  CAS  Google Scholar 

  8. R. Wang, K. Yan, F. Wang, J.D. Zhang, A highly sensitive photoelectrochemical sensor for 4-aminophenol based on CdS graphene nanocomposites and molecularly imprinted polypyrrole. Electrochim. Acta 121, 102–108 (2014)

    Article  CAS  Google Scholar 

  9. R. Sankar Ganesh, E. Durgadevi, M. Navaneethan, S.K. Sharma, H.S. Binitha, S. Ponnusamy, C. Muthamizhchelvan, Y. Hayakawa, Visible light induced photocatalytic degradation of methylene blue and rhodamine B from the catalyst of CdS nanowire. Chem. Phys. Lett. 684, 126–134 (2017)

    Article  Google Scholar 

  10. T. Zhao, Z. Xing, Z. Xiu, Z. Li, S. Yang, W. Zhou, Oxygen-doped MoS2 nanospheres/CdS quantum dots/g-C3N4 nanosheets super-architectures for prolonged charge lifetime and enhanced visible-light-driven photocatalytic performance. ACS Appl. Mater. Interfaces 11, 7104–7111 (2019)

    Article  CAS  Google Scholar 

  11. Y.J. Jing, L. Kang, CdS nanoparticles decorated Ag2WO4 nanorods for increased photocatalytic performance and stability under visible light irradiation. Ceram. Int. 46, 18826–18831 (2020)

    Article  CAS  Google Scholar 

  12. J. You, W. Bao, L. Wang, A. Yan, R. Guo, Preparation, visible light-driven photocatalytic activity, and mechanism of multiphase CdS/C3N4 inorganic-organic hybrid heterojunction. J. Alloy. Compd. 866, 158921 (2021)

    Article  CAS  Google Scholar 

  13. Y. Lin, D. Pan, H. Luo, Hollow direct Z-Scheme CdS/BiVO4 composite with boosted photocatalytic performance for RhB degradation and hydrogen production. Mater. Sci. Semicond. Process 121, 105453 (2021)

    Article  CAS  Google Scholar 

  14. C. Hu, W.F. Tsai, W.H. Wei, K.Y.A. Lin, M.T. Liu, K. Nakagawa, Hydroxylation and sodium intercalation on g-C3N4 for photocatalytic removal of gaseous formaldehyde. Carbon 175, 467–477 (2021)

    Article  CAS  Google Scholar 

  15. W. Wang, Y. Tao, L. Du, Z. Wei, Z. Yan, W.K. Chan, Z. Lian, R. Zhu, D.L. Phillips, G. Lia, Femtosecond time-resolved spectroscopic observation of long-lived charge separation in bimetallic sulfide/g-C3N4 for boosting photocatalytic H2 evolution. Appl. Catal. B-Environ. 282, 119568 (2021)

    Article  CAS  Google Scholar 

  16. C. Sun, J. Yang, Y. Zhu, M. Xu, Y. Cui, L. Liu, W. Ren, H. Zhao, B. Liang, Synthesis of 0D SnO2 nanoparticles/2D g-C3N4 nanosheets heterojunction: improved charge transfer and separation for visible-light photocatalytic performance. J. Alloy. Compd. 871, 159561 (2021)

    Article  CAS  Google Scholar 

  17. Q. Zhong, H. Lan, M. Zhang, H. Zhu, M. Bu, Preparation of heterostructure g-C3N4/ZnO nanorods for high photocatalytic activity on different pollutants (MB, RhB, Cr(VI) and eosin). Ceram. Int. 46, 12192–12199 (2020)

    Article  CAS  Google Scholar 

  18. H. Guo, S. Wan, Y. Wang, W. Ma, Q. Zhong, J. Ding, Enhanced photocatalytic CO2 reduction over direct Z-scheme NiTiO3/g-C3N4 nanocomposite promoted by efficient interfacial charge transfer. Chem. Eng. J. 412, 128646 (2021)

    Article  CAS  Google Scholar 

  19. M.S. Akple, J.X. Low, S. Wageh, A.A. Al-Ghamdi, J.G. Yu, J. Zhang, Enhanced visible light photocatalytic H2-production of g-C3N4/WS2 composite heterostructures. Appl. Surf. Sci. 358, 196–203 (2015)

    Article  CAS  Google Scholar 

  20. W.-K. Jo, N.C.S. Selvam, Z-scheme CdS/g-C3N4 composites with RGO as an electron mediator for efficient photocatalytic H2 production and pollutant degradation. Chem. Eng. J. 317, 913–924 (2017)

    Article  CAS  Google Scholar 

  21. S. Feng, T. Chen, Z. Liu, J. Shi, X. Yue, Y. Li, Z-scheme CdS/CQDs/g-C3N4 composites with visible-near-infrared light response for efficient photocatalytic organic pollutant degradation. Sci. Total Environ. 704, 135404 (2020)

    Article  CAS  Google Scholar 

  22. C. Ji, C. Du, J.D. Steinkruger, C. Zhou, S. Yang, In-situ hydrothermal fabrication of CdS/g-C3N4 nanocomposites for enhanced photocatalytic water splitting. Mater. Lett. 240, 128–131 (2019)

    Article  CAS  Google Scholar 

  23. N. Güy, Directional transfer of photocarriers on CdS/g-C3N4 heterojunction modified with Pd as a cocatalyst for synergistically enhanced photocatalytic hydrogen production. Appl. Surf. Sci. 522, 146442 (2020)

    Article  Google Scholar 

  24. L. Chen, Y. Xu, B. Chen, In situ photochemical fabrication of CdS/g-C3N4 nanocomposites with high performance for hydrogen evolution under visible light. Appl. Catal. B-Environ. 256, 117848 (2019)

    Article  CAS  Google Scholar 

  25. Y. Chen, B. Zhai, Y. Liang, Y. Li, J. Li, Preparation of CdS/g-C3N4/MOF composite with enhanced visible-light photocatalytic activity for dye degradation. J. Solid State Chem. 274, 32–39 (2019)

    Article  CAS  Google Scholar 

  26. F. Al Marzouqi, Y. Kimb, R. Selvaraj, Shifting of the band edge and investigation of charge carrier pathways in the CdS/g-C3N4 heterostructure for enhanced photocatalytic degradation of levofloxacin, New. J. Chem. 43, 9784–9792 (2019)

    CAS  Google Scholar 

  27. P. Chen, F. Liu, H. Ding, S. Chen, L. Chen, Y.J. Li, C.T. Au, S.F. Yin, Porous double-shell CdS@C3N4 octahedron derived by in situ supramolecular self-assembly for enhanced photocatalytic activity. Appl. Catal. B-Environ. 252, 33–40 (2019)

    Article  CAS  Google Scholar 

  28. Y. Yan, X. Chen, H. Zhu, Y. Tang, Nitrofurazone degradation in the self-biased bio-photoelectrochemical system: g-C3N4/CdS photocathode characterization, degradation performance, mechanism and pathways. J. Hazard. Mater. 384, 121438 (2020)

    Article  Google Scholar 

  29. C. Cheng, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, ZnIn2S4 grown on nitrogen-doped hollow carbon spheres: an advanced catalyst for Cr(VI) reduction. J. Hazard. Mater. 391, 122205 (2020)

    Article  CAS  Google Scholar 

  30. G. Li, B. Wang, J. Zhang, R. Wang, H. Liu, Rational construction of a direct Z-scheme g-C3N4/CdS photocatalyst with enhanced visible light photocatalytic activity and degradation of erythromycin and tetracycline. Appl. Surf. Sci. 478, 1056–1064 (2019)

    Article  CAS  Google Scholar 

  31. J. Fu, Novel C3N4-CdS composite photocatalysts with organic-inorganic heterojunctions: in situ synthesis, exceptional activity, high stability and photocatalytic mechanism. J. Mater. Chem. A 9, 3083–3090 (2013)

    Article  Google Scholar 

  32. J. Yu, Morphology-dependent photocatalytic H2-production activity of CdS. Appl. Catal. B Environ. 156–157, 184–191 (2014)

    Article  Google Scholar 

  33. B. Zhu et al., Isoelectric point and adsorption activity of porous g-C3N4. Appl. Surf. Sci. 344, 188–195 (2015)

    Article  CAS  Google Scholar 

  34. Y. Xu, Y. Chen, W.F. Fu, Visible-light driven oxidative coupling of amines to imines with high selectivity in air over core-shell structured CdS@C3N4. Appl. Catal. B 236, 176–183 (2018)

    Article  CAS  Google Scholar 

  35. X. Dai, M. Xie, S. Meng, X. Fu, S. Chen, Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3 Appl. Catal. Environ. 158–159, 382 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Gong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Gong, T. Fabrication of 2D g-C3N4/CdS core–shell heterojunction with effective photocatalytic activity for dye degradation and reduction of Cr(VI) under visible light. J Mater Sci: Mater Electron 32, 16845–16853 (2021). https://doi.org/10.1007/s10854-021-06245-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06245-2

Navigation