Skip to main content

Advertisement

Log in

Structural and temperature-tuned bandgap characteristics of thermally evaporated β-In2S3 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In2S3 is one of the attractive compounds taking remarkable interest in optoelectronic device applications. The present study reports the structural and optical characteristics of thermally evaporated β-In2S3 thin films. The crystalline structure of the thin films was found as cubic taking into account the observed diffraction peaks in the X-ray diffraction pattern. The atomic compositional ratio of constituent elements was obtained as consistent with chemical formula of In2S3. Three peaks around 275, 309 and 369 cm−1 were observed in the Raman spectrum. Temperature-tuned bandgap energy characteristics of the In2S3 thin films were revealed from the investigation of transmittance spectra obtained at various temperatures between 10 and 300 K. The analyses of the transmittance spectra indicated that direct bandgap energy of the In2S3 thin films decreases from 2.40 eV (at 10 K) to 2.37 eV (at 300 K) with the increase of measurement temperature. The bandgap energy vs. temperature relation was investigated by means of Varshni optical model. The fitting of the experimental data under the light of theoretical expression revealed the absolute zero bandgap energy, the rate of change of bandgap energy and Debye temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O. Pobncelet, R. Kotipalli, B. Vermang, A. Macleod, L.A. Francis, D. Flandre, Sol. Energy 146, 443 (2017)

    Article  Google Scholar 

  2. D.A.R. Barkhouse, R. Haight, N. Sakai, H. Hiroi, H. Sugimoto, D.B. Mitzi, Appl. Phys. Lett. 100, 4 (2012)

    Article  Google Scholar 

  3. M. Mathew, M. Gopinath, C.S. Kartha, K.P. Vijayakumar, Y. Kashiwaba, T. Abe, Sol. Energy 84(6), 888–897 (2010)

    Article  CAS  Google Scholar 

  4. Z. Braiek, A. Brayek, M. Ghoul, S. Ben Taieb, M. Gannouni, I. Ben Assaker, A. Souissi, R. Chtourou, J. Alloys Compd. 653, 395–401 (2015)

    Article  CAS  Google Scholar 

  5. M. Liu, Z. Li, J. Jing, M. Dou, F. Wang, J. Mater. Sci.: Mater. Electron. 28, 5044–5052 (2017)

    CAS  Google Scholar 

  6. G. Surucu, K. Colakoglu, E. Deligoz, Y. Ciftci, N. Korozlu, J. Mater. Sci. 46, 1007–1014 (2011)

    Article  CAS  Google Scholar 

  7. B. Derkowska, F. Firszt, B. Sahraoui, A. Marasek, M. Kujawa, Opto-Electron. Rev. 16, 8 (2008)

    Article  CAS  Google Scholar 

  8. G. Surucu, K. Colakoglu, E. Deligoz, Y. Ciftci, N. Korozlu, Solid State Commun. 150(29–30), 1413–1418 (2010)

    Article  CAS  Google Scholar 

  9. Y. Bchiri, B. Tiss, N. Bouguila, R. Souissi, M. Kraini, C. Vazquez-Vazquez, K. Khirouni, S. Alaya, Mater. Sci. Semicond. Proc. 121, 105294 (2021)

    Article  CAS  Google Scholar 

  10. D.M. Ma, W.Y. Liu, Q. Chen, Z. Jin, Y. Zhang, J. Huang, H. Zhang, F.M. Peng, T. Luo, J. Solid State Chem. 293, 121791 (2021)

    Article  CAS  Google Scholar 

  11. J.T. Lu, A.X. Wei, Y. Zhao, L.L. Tao, Y.B. Yang, Z.Q. Zheng, H. Wang, D.X. Luo, J. Liu, L. Tao, H. Li, J.B. Li, J.B. Xu, ACS Photonics 5, 4912 (2018)

    Article  CAS  Google Scholar 

  12. Z.F. Jiang, B. Wang, J.C. Yu, J.F. Wang, T.C. An, H.J. Zhao, H.M. Li, S.Q. Yuan, P.K. Wong, Nano Energy 46, 234 (2018)

    Article  CAS  Google Scholar 

  13. Y. Zhao, D.Z. Yu, J.T. Lu, L. Tao, Z.F. Chen, Y.B. Yang, A.X. Wei, L.L. Tao, J. Liu, Z.Q. Zheng, M.M. Hao, J.B. Xu, Adv. Opt. Mater. 7, 1901085 (2019)

    Article  CAS  Google Scholar 

  14. M. Toumi, N. Bouguila, R. Souissi, B. Tiss, M. Kraini, S. Alaya, Optik 217, 164896 (2020)

    Article  CAS  Google Scholar 

  15. B. Tiss, N. Bouguila, M. Kraini, K. Khirouni, C. Vazquez-Vazquez, L. Cunha, C. Moura, S. Alaya, Mater. Sci. Semicond. Proc. 114, 105080 (2021)

    Article  Google Scholar 

  16. Y. Liu, L.Y. Du, K.K. Gu, M.Z. Zhang, J. Lumin. 217, 116775 (2020)

    Article  CAS  Google Scholar 

  17. N. Bouguila, M. Kraini, A. Timoumi, J. Koaib, I. Halidou, C. Vazquez-Vazquez, J. Mater. Sci.: Mater. Electron. 30, 6178 (2019)

    CAS  Google Scholar 

  18. N. Kaur, D. Sharma, B.R. Mehta, Mater. Sci. Eng. B 264, 114889 (2021)

    Article  CAS  Google Scholar 

  19. J.T. Lu, Z.Q. Zheng, J.D. Yao, W. Gao, Y. Xiao, M.L. Zhang, J.B. Li, Nanoscale 12, 7196 (2020)

    Article  CAS  Google Scholar 

  20. C.H. Ho, Y.P. Wang, C.H. Chan, Y.S. Huang, C.H. Li, J. Appl. Phys. 108, 043518 (2010)

    Article  Google Scholar 

  21. T. Sall, B.M. Soucase, M. Mollar, B. Hartitti, M. Fahoume, J. Phys. Chem. Sol. 76, 100 (2015)

    Article  CAS  Google Scholar 

  22. P. Scherrer, Nachr. Ges. Wiss. Göttingen 26, 98 (1918)

    Google Scholar 

  23. M. Terlemezoglu, O. Bayraklı Surucu, T. Colakoglu, M.K. Abak, H.H. Gullu, Ç. Ercelebi, M. Parlak, Mater. Res. Express 6, 026421 (2018)

    Article  Google Scholar 

  24. Ö. Bayraklı Sürücü, J. Mater. Sci.: Mater. Electron. 30, 19270 (2019)

    Google Scholar 

  25. L. Chen, Z. Li, C. Yan, RSC Adv. 10, 23662 (2020)

    Article  CAS  Google Scholar 

  26. M. Kraini, J. El Ghoul, R. Souissi, A. Sharma, F.W. Aldbea, H. Abassi, N. Bouguila, C. Vazquez-Vazquez, Mater. Res. Express 6, 106431 (2019)

    Article  CAS  Google Scholar 

  27. J.I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, Englewood Cliffs, New Jersey, 1971).

    Google Scholar 

  28. N. Revathi, P. Prathap, K.T. Ramakrishna Reddy, Solid State Sci. 11(7), 1288–1296 (2009)

    Article  CAS  Google Scholar 

  29. O.V. Goncharova, V.F. Gremenok, Semiconductors 43(1), 96–101 (2009)

    Article  CAS  Google Scholar 

  30. L.K. Dintle, P.V.C. Luhanga, C. Moditswe, C.M. Muiva, Phys. E 99, 91 (2018)

    Article  CAS  Google Scholar 

  31. D.T. Speaks, Int. J. Mech. Mater. Eng. 15, 2 (2020)

    Article  Google Scholar 

  32. B. Saha, K. Sarkar, A. Bera, K. Deb, R. Thapa, Appl. Surf. Sci. 418, 328 (2017)

    Article  CAS  Google Scholar 

  33. Y.P. Varshni, Physica 34, 149 (1964)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Surucu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surucu, O., Isik, M., Terlemezoglu, M. et al. Structural and temperature-tuned bandgap characteristics of thermally evaporated β-In2S3 thin films. J Mater Sci: Mater Electron 32, 15851–15856 (2021). https://doi.org/10.1007/s10854-021-06137-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06137-5

Navigation