Skip to main content

Advertisement

Log in

Effects of reducing PbO content on the elastic and radiation attenuation properties of germanate glasses: a new non‐toxic candidate for shielding applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work presents a detailed study on the effects of reducing PbO content on the elastic and radiation shielding properties of germanate glasses described by the chemical formula 50GeO2-(50-x)PbO-xZnO, where x between 0 and 50 mol % with step of 10. A theoretical analysis based on Makishima-Mackenzie’s theory (MM-theory) was employed to obtain the elastic moduli of the studied glass specimens. Moreover, the Monte Carlo simulations were applied via Geant4 platform to assess the radiation shielding ability of the GeO2-PbO-ZnO glass system by evaluating several fundamental properties such as gamma and neutron transmission factors, total cross sections, effective atomic numbers, 1/e penetration depths, and exposure buildup factors. We found that the bulk elastic modulus increased from 50.751 GPa to 85.389 GPa as the PbO content decreased from 50 mol% to 0. The results of the linear attenuation coefficient show that the cross sections of \({\left(\sigma \right)}_{PE}, {\left(\sigma \right)}_{CS}\), and \({\left(\sigma \right)}_{PP}\) dominates the photon attenuation at 0.15 ≤ E \(\le\)0.08; 0.8 < E < 8, and 8 < E < 15 MeV, respectively. Moreover, the present glasses have superior photon absorbing capacity compared to ordinary and barite concrete; RS-253-G18 and RS-360 commercial glass shields. This suggests that the GeO2-PbO-ZnO glass system can be used as a non-toxic shielding material in the nuclear facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Mattsson. “Introduction: The Importance of Radiation Protection in Nuclear Medicine.“ Radiation Protection in Nuclear Medicine, pp. 1–3. Springer, Berlin, Heidelberg, 2013

    Chapter  Google Scholar 

  2. S.H. Weingart “Physical security devices for computer subsystems: A survey of attacks and defenses.“ In International Workshop on Cryptographic Hardware and Embedded Systems, pp. 302–317. Springer, Berlin, Heidelberg, 2000

  3. National Research Council. “Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2.“ (2006)

  4. R. Preston, J.D. Julian, A. Boice Jr., R. Bertrand Brill, R. Chakraborty, F. Conolly, R.W. Owen Hoffman, Hornung et al., Uncertainties in estimating health risks associated with exposure to ionising radiation. Journal of radiological protection 33(3), 573 (2013)

    Article  Google Scholar 

  5. L. Krille, G.P. Hammer, H. Merzenich, Hajo Zeeb. “Systematic review on physician’s knowledge about radiation doses and radiation risks of computed tomography.“ Eur. J. Radiol. 76, 1 (2010): 36–41

    Article  Google Scholar 

  6. A.B. Chilton, J.Kenneth Shultis, E. Richard Faw. “Principles of radiation shielding.“ (1984)

  7. B. Price, C.C. Terence Horton, and Kenneth Thomas Spinney. Radiation shielding. Pergamon press, 1957

  8. J.P. McCaffrey, H. Shen, B. Downton, E. Mainegra-Hing (2007) “Radiation attenuation by lead and nonlead materials used in radiation shielding garments.“ Medical physics 34(2): 530–537

  9. R. Divina, K.A. Naseer, K. Marimuthu et al., Effect of different modifier oxides on the synthesis, structural, optical, and gamma/beta shielding properties of bismuth lead borate glasses doped with europium. J. Mater. Sci.: Mater. Electron. 31, 21486–21501 (2020). https://doi.org/10.1007/s10854-020-04662-3

    Article  CAS  Google Scholar 

  10. M.S. Al-Buriahi, H.H. Hegazy, F. Alresheedi, I.O. Olarinoye, H. Algarni, H.O. Tekin, H.A. Saudi, Effect of CdO addition on photon, electron, and neutron attenuation properties of boro-tellurite glasses. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.10.168

    Article  Google Scholar 

  11. G. Lakshminarayana, A. Kumar, H.O. Tekin, A.M. Shams, M.S. Issa, D.-E. Al-Buriahi, J. Lee, Yoon, Taejoon Park. (2020)Binary B2O3–Bi2O3 glasses: scrutinization of directly and indirectly ionizing radiations shielding abilities. Journal of Materials Research and Technology 9, 6: 14549–14567. https://doi.org/10.1016/j.jmrt.2020.10.019

    Article  CAS  Google Scholar 

  12. P.B. Tchounwou, G. Clement, A.K. Yedjou, Patlolla, J. Dwayne, Sutton. “Heavy metal toxicity and the environment.“ Molecular, clinical and environmental toxicology (2012): 133–164

  13. G.M. Naja, and Bohumil Volesky. “Toxicity and sources of Pb, Cd, Hg, Cr, As, and radionuclides in the environment. Heavy metals in the environment 8, 16–18 (2009)

    Google Scholar 

  14. P. Sharma, Rama Shanker Dubey. “Lead toxicity in plants.“ Brazilian journal of plant physiology 17, 1 (2005): 35–52

    Article  CAS  Google Scholar 

  15. D.K. Stalin, Salavadi, M.S. Gaikwad, Ch Al-Buriahi, S.A. Srinivasu, H.O. Ahmed, Tekin, and Syed Rahman. “Influence of Bi2O3/WO3 substitution on the optical, mechanical, chemical durability and gamma ray shielding properties of lithium-borate glasses. Ceram. Int. 47(4), 5286–5299 (2021)

    Article  Google Scholar 

  16. I. Boukhris, I. Kebaili, M.S. Al-Buriahi, C. Sriwunkum, M.I. Sayyed, “Effect of lead oxide on the optical properties and radiation shielding efficiency of antimony-sodium-tungsten glasses. Appl. Phys. A 126(10), 1–10 (2020)

    Article  Google Scholar 

  17. I.O. Olarinoye, Y.S. Rammah, S. Alraddadi, C. Sriwunkum, A.F. Abd El-Rehim, H.Y. Zahran, M.S. Al-Buriahi, The effects of La2O3 addition on mechanical and nuclear shielding properties for zinc borate glasses using Monte Carlo simulation. Ceram. Int. 46(18), 29191–29198 (2020)

    Article  CAS  Google Scholar 

  18. L.F. Guedes, L.M. Nascimento, R.O. Marcondes, G. Evangelista, V.G. Batista, Mendoza, Fabia Castro Cassanjes, and Gael Yves Poirier. “Effect of alkaline modifiers on the structural, optical and crystallization properties of niobium germanate glasses and glass-ceramics. Opt. Mater. 105, 109866 (2020)

    Article  Google Scholar 

  19. O.N. Koroleva, M.V. Shtenberg, N. Tatyana, Ivanova. “The structure of potassium germanate glasses as revealed by Raman and IR spectroscopy. J. Non-Cryst. Solids 510, 143–150 (2019)

    Article  CAS  Google Scholar 

  20. R. Rada, Simona, M. Chelcea, A. Rada, N. Bot, V. Aldea, Rednic, and E. Culea. “Electrochemical characterization and structure of tungsten–lead–germanate glasses and glass ceramics. Electrochim. Acta 109, 82–88 (2013)

    Article  Google Scholar 

  21. S.S. Bayya, G.D. Chin, S. Jasbinder, Sanghera, D. Ishwar, Aggarwal. “Germanate glass as a window for high energy laser systems. Opt. Express 14(24), 11687–11693 (2006)

    Article  CAS  Google Scholar 

  22. A. Trukhin, B. Capoen, Raman and optical reflection spectra of germanate and silicate glasses. J. Non-cryst. Solids 351, no. 46–48 (2005). “.“ ( : 3640–3643.

    Google Scholar 

  23. E. Mansour, G. El-Damrawi, R.E. Fetoh, H. Doweidar, “Structure-properties changes in ZnO-PbO-GeO 2 glasses.“. The European Physical Journal B 83(2), 133–141 (2011)

    Article  CAS  Google Scholar 

  24. S. Agostinelli, J. Allison, K. al Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai et al., GEANT4—a simulation toolkit. Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506(3), 250–303 (2003)

    Article  CAS  Google Scholar 

  25. A. Makishima, J.D. Mackenzie, Direct calculation of Young’s moidulus of glass. J. Non-Cryst. Solids 12(1), 35–45 (1973)

    Article  CAS  Google Scholar 

  26. A. Makishima, J.D. Mackenzie, Calculation of bulk modulus, shear modulus and Poisson’s ratio of glass. Journal of Non-crystalline solids 17(2), 147–157 (1975)

    Article  CAS  Google Scholar 

  27. A.El-Moneim Amin, H.Y. Alfifi, Germanate glasses containing lead and bismuth oxides: Correlation between elastic and compositional parameters. J. Non-Cryst. Solids 546, 120275 (2020)

    Article  Google Scholar 

  28. A. Abd El-Moneim, Elastic moduli and Poisson’s ratio prediction in borate-based PbO-B2O3-V2O5 and Li2O-ZnO-B2O3 glass systems. J. Non-Cryst. Solids 514, 69–76 (2019)

    Article  Google Scholar 

  29. A. Abd El-Moneim, R. El-Mallawany, Analysis and prediction for elastic properties of quaternary tellurite Ag2O–V2O5–MoO3–TeO2 and WO3–B2O3–MgO–TeO2 glasses. J. Non-Cryst. Solids 522, 119580 (2019)

    Article  CAS  Google Scholar 

  30. E. Şakar, ÖF. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020)

    Article  Google Scholar 

  31. S.S. Mann, K.S. Mann (2020). “RIPM-Toolkit: a computer program to investigate double-layered gamma-ray shielding enclosures.” Computational methods in nuclear radiation shielding and dosimetry, Edited by K.S. Mann, and V.P. Singh, Nova Science Publishers, New York, 1–30

  32. I.O. Olarinoye, F.I. El-Agawany, A. El-Adawy, E.S. Yousef, Y.S. Rammah, Mechanical features, alpha particles, photon, proton, and neutron interaction parameters of TeO2–V2O3–MoO3 semiconductor glasses. Ceramics International 46(14), 23134–23144 (2020)

    Article  CAS  Google Scholar 

  33. G.J. Hine, The effective atomic numbers of materials for various gamma ray interactions. Phys. Rev. 85, 725 (1952)

    CAS  Google Scholar 

  34. I.O. Olarinoye, Variation of Effective Atomic Numbers of Some Thermoluminescence and Phantom Materials with Photon Energies. Research Journal of Chemical Science 1(2), 64–69 (2011)

    Google Scholar 

  35. I.O. Olarinoye (2020). “Ambient dose buildup factor.” Computational methods in nuclear radiation shielding and dosimetry, Edited by K.S. Mann, and V.P. Singh, Nova Science Publishers, New York, 87–112

  36. I.O. Olarinoye, R.I. Odiaga, S. Paul, EXABCal: A program for calculating photon exposure and energy absorption buildup factors. Heliyon 5(7), e02017 (2019)

  37. Y. Harima, An approximation of gamma-ray buildup factors by modified geometrical progression. Nucl. Sci. Eng. 83, 299–309 (1983). https://doi.org/10.13182/NSE83-A18222

    Article  CAS  Google Scholar 

  38. P. Basu, R. Sarangapani, B. Venkatraman, Gamma ray buildup factors for conventional shielding materials and buildup factors computed for tungsten with a thickness beyond 40 mean free paths. Appl. Radiat. Isot. 154, 108864 (2019)

    Article  CAS  Google Scholar 

  39. U. Perişanoğlu, F.I. El-Agawany, E. Kavaz, M. Al-Buriahi, Y.S. Rammah, Surveying of Na2O3–BaO–PbO–Nb2O5–SiO2–Al2O3 glass-ceramics system in terms of alpha, proton, neutron and gamma protection features by utilizing GEANT4 simulation codes. Ceram. Int. 46(3), 3190–3202 (2020)

    Article  Google Scholar 

  40. P. Aly, A.A. El-Kheshen, H. Abou-Gabal, S. Agamy (2020). Structural investigation and measurement of the shielding effect of borosilicate glass containing PbO, SrO, and BaO against gamma irradiation. Journal of Physics and Chemistry of Solids, 109521

  41. Y.S. Rammah, I.O. Olarinoye, F.I. El-Agawany, A. El-Adawy, El Sayed Yousef. The f-factor, neutron, gamma radiation and proton shielding competences of glasses with Pb or Pb/Bi heavy elements for nuclear protection applications, Ceramics International, vol. 46, 17, 2020, pp. 27163–27174

  42. M.S. Amani Alalawi, M.I. Al-Buriahi, H. Sayyed, H. Akyildirim, M.H.M. Arslan, B.T. Zaid, Tonguc, Influence of lead and zinc oxides on the radiation shielding properties of tellurite glass systems. Ceram. Int. 46, 17300–17306 (Aug 2020). https://doi.org/10.1016/j.ceramint.2020.04.017

    Article  CAS  Google Scholar 

  43. M.S. Al-Buriahi et al. “Radiation attenuation properties of some commercial polymers for advanced shielding applications”, Polymers for Advanced Technologies. 1–11 2021. https://doi.org/10.1002/pat.5267

  44. A. Saeed et al. “Neutron and charged particle attenuation properties of volcanic rocks”, Radiation Physics and Chemistry. 184: 109454; 2021. https://doi.org/10.1016/j.radphyschem.2021.109454

  45. B. Alshahrani et al., “Amorphous alloys with high Fe content for radiation shielding applications”, Radiation Physics and Chemistry. 183: 109386; June, 2021. https://doi.org/10.1016/j.radphyschem.2021.109386

  46. M.S. Al-Buriahi, M. Esraa, Bakhsh, Barıs Tonguc, and Sher Bahadar Khan. “Mechanical and radiation shielding properties of tellurite glasses doped with ZnO and NiO. " Ceramics International 46(11), 19078–19083 (2020)

    Article  CAS  Google Scholar 

  47. M.S. Al-Buriahi, B.T. Tonguc, Study on gamma-ray buildup factors of bismuth borate glasses. Appl. Phys. A 125, 482 (2019). https://doi.org/10.1007/s00339-019-2777-4

    Article  CAS  Google Scholar 

  48. M.S. Al-Buriahi, C. Sriwunkum, H. Arslan et al., Investigation of barium borate glasses for radiation shielding applications. Appl. Phys. A 126, 68 (2020). https://doi.org/10.1007/s00339-019-3254-9

    Article  CAS  Google Scholar 

  49. M.S. Al-Buriahi, V.P. Singh, A. Alalawi, C. Sriwunkum, Baris Tamer Tonguc. (2020),Mechanical features and radiation shielding properties of TeO2–Ag2O-WO3 glasses. Ceram. Int. https://doi.org/10.1016/j.ceramint.2020.03.091

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-Track Path of Research Funding Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Al-Buriahi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Buriahi, M.S., Alzahrani, J.S., Olarinoye, I.O. et al. Effects of reducing PbO content on the elastic and radiation attenuation properties of germanate glasses: a new non‐toxic candidate for shielding applications. J Mater Sci: Mater Electron 32, 15080–15094 (2021). https://doi.org/10.1007/s10854-021-06060-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06060-9

Navigation