Skip to main content
Log in

A comprehensive study on novel alumino-borosilicate glass reinforced with Bi2O3 for radiation shielding applications: synthesis, spectrometer, XCOM, and MCNP-X works

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, a novel glass system, 10Na2O–6MgO–9CaO–5Al2O3–12B2O3-(100−x)SiO2xBi2O3 (x: 0, 2.5, 5, 7.5, and 10 mol%), was investigated in terms of physical properties and radiation shielding competencies. For this, the ABS glass series was successfully synthesized by following batch preparation, melting, shaping, and annealing steps. Mineralogical analysis X-ray diffraction (XRD) and glass density (ρglass) were measured, while molar volume (Vm) and oxygen packing density (OPD) calculations were done for each glass series. We determined that the increasing amount in Bi2O3 in substitution for SiO2 ascended the overall ρglass from 2.8067 to 3.3067 g/cm3. Further, one can report that Vm and OPD exhibited an opposite behavior due to the loose packing in the glass network. The XRD patterns clearly indicated the non-crystallinity in the ABS series irrespective of the varying amounts in Bi2O3. On the other hand, gamma-ray spectroscopic measurements were performed in the photon energies of 0.662, 1.173, and 1.332 MeV to find out mass attenuation coefficient (MAC). It was observed that the highest MAC value was obtained for ABS4 glass (highest Bi2O3 content). Additionally, Monte Carlo simulation codes (MCNP-X) were employed to highlight the MAC values. As a result of these determinations, we reported that the experimental, XCOM, and MCNP-X findings demonstrated a good agreement with each other. Based on the experimental MAC, other significant parameters, such as the half-value layer (HVL), tenth-value layer (TVL), effective atomic numbers (Zeff), and Exposure Build-up Factors (EBF) and Energy Absorption Build-up Factors (EABF) were evaluated for the investigated ABS glass system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. B. Karasu, O. Bereket, E. Biryan, D. Sanoğlu, The latest developments in glass science and technology. El-Cezeri Fen veMühendislikDerg. 4(2), 209–233 (2017). https://doi.org/10.31202/ecjse.318204

    Article  Google Scholar 

  2. E.D. Zanotto, J.C. Mauro, The glassy state of matter: its definition and ultimate fate. J. Non-Cryst. Solids 471, 490–495 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.05.019

    Article  CAS  Google Scholar 

  3. H.A. Saudi, W.M. Abd-Allah, K.S. Shaaban, Investigation of gamma and neutron shielding parameters for borosilicate glasses doped europium oxide for the immobilization of radioactive waste. J. Mater. Sci. Mater. Electron. 31(9), 6963–6976 (2020). https://doi.org/10.1007/s10854-020-03261-6

    Article  CAS  Google Scholar 

  4. M.I. Sayyed, Y. Elmahroug, B.O. Elbashir, S.A.M. Issa, Gamma-ray shielding properties of zinc oxide soda lime silica glasses. J. Mater. Sci. Mater. Electron. 28(5), 4064–4074 (2017). https://doi.org/10.1007/s10854-016-6022-z

    Article  CAS  Google Scholar 

  5. A.S. Abouhaswa, H.M.H. Zakaly, S.A.M. Issa, M. Pyshkina, R. El-Mallawany, M.Y.A. Mostafa, Lead borate glasses and synergistic impact of lanthanum oxide additive: optical and nuclear radiation shielding behaviors. J. Mater. Sci. Mater. Electron. 31(17), 14494–14501 (2020). https://doi.org/10.1007/s10854-020-04009-y

    Article  CAS  Google Scholar 

  6. M. Kurudirek, N. Chutithanapanon, R. Laopaiboon, C. Yenchai, C. Bootjomchai, Effect of Bi2O3 on gamma ray shielding and structural properties of borosilicate glasses recycled from high pressure sodium lamp glass. J. Alloys Compd. 745, 355–364 (2018). https://doi.org/10.1016/j.jallcom.2018.02.158

    Article  CAS  Google Scholar 

  7. H. Donya, S. Sulami, Photon shielding characterization of a modified titania-bismuth-borotellurite glass system for medical applications. J. Korean Phys. Soc. 75(11), 871–877 (2019). https://doi.org/10.3938/jkps.75.871

    Article  CAS  Google Scholar 

  8. E.S.A. Waly, G.S. Al-Qous, M.A. Bourham, Shielding properties of glasses with different heavy elements additives for radiation shielding in the energy range 15–300 keV. Radiat. Phys. Chem. 150(February), 120–124 (2018). https://doi.org/10.1016/j.radphyschem.2018.04.029

    Article  CAS  Google Scholar 

  9. M.K. Halimah, A. Azuraida, M. Ishak, L. Hasnimulyati, Influence of bismuth oxide on gamma radiation shielding properties of boro-tellurite glass. J. Non. Cryst. Solids 512(2018), 140–147 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.03.004

    Article  CAS  Google Scholar 

  10. Y.S. Rammah et al., SnO reinforced silicate glasses and utilization in gamma radiation shielding applications. Emerg. Mater. Res. 9(3), 1–8 (2020). https://doi.org/10.1680/jemmr.20.00150

    Article  Google Scholar 

  11. R.B. Malidarre, F. Kulali, A. Inal, A. Oz, Monte Carlo simulation of the waste soda-lime-silica glass system contained Sb2O3 for Gamma-ray shielding. Emerg. Mater. Res. 9(4), 1–7 (2020). https://doi.org/10.1680/jemmr.20.00202

    Article  Google Scholar 

  12. M. Eshghi, Investigation of radiation protection features of the TeO2–B2O3–Bi2O3–Na2O–NdCl3 glass systems. J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-04202-z

    Article  Google Scholar 

  13. A.K. Varshneya, J.C. Mauro, Fundamentals of Inorganic Glass Making (Elsevier, Amsterdam, 2019).

    Book  Google Scholar 

  14. S.A.M. Issa, M.I. Sayyed, A.M.A. Mostafa, G. Lakshminarayana, I.V. Kityk, Investigation of mechanical and radiation shielding features of heavy metal oxide based phosphate glasses for gamma radiation attenuation applications. J. Mater. Sci. Mater. Electron. 30(13), 12140–12151 (2019). https://doi.org/10.1007/s10854-019-01572-x

    Article  CAS  Google Scholar 

  15. Y. Al-Hadeethi, S.A. Tijani, The use of lead-free transparent 50BaO-(50–x)borosilicate-xBi2O3 glass system as radiation shields in nuclear medicine. J. Alloys Compd. 803, 625–630 (2019). https://doi.org/10.1016/j.jallcom.2019.06.259

    Article  CAS  Google Scholar 

  16. M. Hasanuzzaman, A. Rafferty, M. Sajjia, A.-G. Olabi, Properties of Glass Materials. Reference Module in Materials Science and Materials Engineering (Elsevier, Amsterdam, 2016).

    Google Scholar 

  17. L.S. Ravangave, G.N. Devde, Structure and physical properties of 59B2O3–10Na2O–(30–x)CdO–xZnO–1CuO (0 ≤ x ≤ 30) glass system. Adv. Glass Sci. Technol. (2018). https://doi.org/10.5772/intechopen.73865

    Article  Google Scholar 

  18. Y.T. Shih, J.H. Jean, Composition-structure-properties relationship of lithium-calcium borosilicate glasses studied by molecular dynamics simulation. Ceram. Int. 44(10), 11554–11561 (2018). https://doi.org/10.1016/j.ceramint.2018.03.216

    Article  CAS  Google Scholar 

  19. S. Konoshita, F. Sato, S. Yoshihara, A. Sakamoto, Influence of platinum, antimony and iron ions on coloration of alkali-borosilicate optical glass. Opt. Mater. (Amst) 34(4), 600–603 (2012). https://doi.org/10.1016/j.optmat.2011.08.035

    Article  CAS  Google Scholar 

  20. R.K. Mishra et al., A comparative study on the structural aspects of sodium borosilicate glasses and barium borosilicate glasses: effect of Al2O3 addition. J. Non. Cryst. Solids 447, 283–289 (2016). https://doi.org/10.1016/j.jnoncrysol.2016.04.040

    Article  CAS  Google Scholar 

  21. V.E. Eremyashev, D.A. Zherebtsov, L.M. Osipova, M.V. Brazhnikov, Effect of calcium, barium, and strontium on the thermal properties of borosilicate glasses. Glass Ceram. (English Transl. StekloiKeramika) 74(9–10), 345–348 (2018). https://doi.org/10.1007/s10717-018-9991-y

    Article  CAS  Google Scholar 

  22. H.O. Tekin et al., Nuclear radiation shielding competences of barium (Ba) reinforced borosilicate glasses. Emerg. Mater. Res. 9(4), 1–12 (2020). https://doi.org/10.1680/jemmr.20.00185

    Article  Google Scholar 

  23. Y. Al-Hadeethi, M.I. Sayyed, Analysis of borosilicate glasses doped with heavy metal oxides for gamma radiation shielding application using Geant4 simulation code. Ceram. Int. 45(18), 24858–24864 (2019). https://doi.org/10.1016/j.ceramint.2019.08.234

    Article  CAS  Google Scholar 

  24. I. Boukhris, I. Kebaili, M.S. Al-Buriahi, B. Tonguc, M.M. AlShammari, M.I. Sayyed, Effect of bismuth oxide on the optical features and gamma shielding efficiency of lithium zinc borate glasses. Ceram. Int. 46(14), 22883–22888 (2020). https://doi.org/10.1016/j.ceramint.2020.06.061

    Article  CAS  Google Scholar 

  25. H.O. Tekin et al., Synthesis and nuclear radiation shielding characterization of newly developed germanium oxide and bismuth oxide glasses. Ceram. Int. 45(18), 24664–24674 (2019). https://doi.org/10.1016/j.ceramint.2019.08.204

    Article  CAS  Google Scholar 

  26. R. Bagheri, A. KhorramiMoghaddam, H. Yousefnia, Gamma ray shielding study of barium–bismuth–borosilicate glasses as transparent shielding materials using MCNP-4C Code, XCOM program, and available experimental data. Nucl. Eng. Technol. 49(1), 216–223 (2017). https://doi.org/10.1016/j.net.2016.08.013

    Article  Google Scholar 

  27. R. Kurtulus, T. Kavas, I. Akkurt, K. Gunoglu, An experimental study and WinXCom calculations on X-ray photon characteristics of Bi2O3- and Sb2O3-added waste soda-lime-silica glass. Ceram. Int. 46(September), 21120–21127 (2020). https://doi.org/10.1016/j.ceramint.2020.05.188

    Article  CAS  Google Scholar 

  28. A.H. Ghanem, A.T.M. Farag, A.G. Al-Sehemi, A. Al-Ghamdi, W.A. Farooq, F. Yakuphanoglu, Bismuth borate glass based nuclear materials. SILICON 10(3), 1195–1201 (2018). https://doi.org/10.1007/s12633-017-9593-2

    Article  CAS  Google Scholar 

  29. O. Sanz, E. Haro-Poniatowski, J. Gonzalo, J.M. Fernández Navarro, Influence of the melting conditions of heavy metal oxide glasses containing bismuth oxide on their optical absorption. J. Non. Cryst. Solids 352(8), 761–768 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.02.002

    Article  CAS  Google Scholar 

  30. M.S. Al-Buriahi et al., Influence of Bi2O3/PbO on nuclear shielding characteristics of lead-zinc-tellurite glasses. Phys. B Condens. Matter 581(December), 411946 (2020). https://doi.org/10.1016/j.physb.2019.411946

    Article  CAS  Google Scholar 

  31. Y.S. Rammah, K.A. Mahmoud, E. Kavaz, A. Kumar, F.I. El-Agawany, The role of PbO/Bi2O3 insertion on the shielding characteristics of novel borate glasses. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.04.018

    Article  Google Scholar 

  32. İ Akkurt, S.S. Arda, K. Gunoglu, Variation of energy resolution with distance for a NaI(Tl) detector. Acta Phys. Polon. A (2015). https://doi.org/10.12693/APhysPolA.128.B-422

    Article  Google Scholar 

  33. İ Akkurt, F. Waheed, H. Akyildirim, K. Gunoglu, Monte Carlo simulation of a NaI(Tl) detector efficiency. Radiat. Phys. Chem. 176, 109081 (2020). https://doi.org/10.1016/j.radphyschem.2020.109081

    Article  CAS  Google Scholar 

  34. I. Akkurt, K. Gunoglu, S.S. Arda, Detection efficiency of NaI(Tl) detector in 511–1332 keV energy range. Sci. Technol. Nucl. Install. (2014). https://doi.org/10.1155/2014/186798

    Article  Google Scholar 

  35. Y.Y. Çelen, A. Evcin, Synthesis and characterizations of magnetite-borogypsum for radiation shielding. Emerg. Mater. Res. 9(3), 1–7 (2020). https://doi.org/10.1680/jemmr.20.00098

    Article  Google Scholar 

  36. A. Özseven, I. Akkurt, K. Günoğlu, Determination of some dosimetric parameters in Eğirdir Lake, Isparta, Turkey. Int. J. Environ. Sci. Technol. 17(3), 1503–1510 (2020). https://doi.org/10.1007/s13762-019-02569-z

    Article  CAS  Google Scholar 

  37. I. Akkurt, Effective atomic and electron numbers of some steels at different energies. Ann. Nucl. Energy 36(11–12), 1702–1705 (2009). https://doi.org/10.1016/j.anucene.2009.09.005

    Article  CAS  Google Scholar 

  38. I. Akkurt, H. Akyýldýrým, B. Mavi, S. Kilincarslan, C. Basyigit, Photon attenuation coefficients of concrete includes barite in different rate. Ann. Nucl. Energy 37(7), 910–914 (2010). https://doi.org/10.1016/j.anucene.2010.04.001

    Article  CAS  Google Scholar 

  39. I. Akkurt, C. Basyigit, S. Kilincarslan, B. Mavi, A. Akkurt, Radiation shielding of concretes containing different aggregates. Cem. Concr. Compos. 28(2), 153–157 (2006). https://doi.org/10.1016/j.cemconcomp.2005.09.006

    Article  CAS  Google Scholar 

  40. R. C. C. Collection, MCNPX user’s manual version 2.4.0. Monte Carlo N-particle transport code system for multiple and high energy applications (2002)

  41. “NIST XCOM: Element/compound/mixture (2020). https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html. Accessed 14 Feb 2020

  42. I. Akkurt, H.O. Tekin, Radiological parameters for bismuth oxide glasses using phy-x/psd software. Emerg. Mater. Res. 9(3), 1–9 (2020). https://doi.org/10.1680/jemmr.20.00209

    Article  Google Scholar 

  43. H.O. Tekin et al., Structural and physical characterization study on synthesized tellurite (TeO2) and germanate (GeO2) glass shields using XRD, Raman spectroscopy, FLUKA and PHITS. Opt. Mater. (Amst.) 110, 110533 (2020). https://doi.org/10.1016/j.optmat.2020.110533

    Article  CAS  Google Scholar 

  44. A.M.A. Mostafa et al., Multi-objective optimization strategies for radiation shielding performance of BZBB glasses using Bi2O3: a FLUKA Monte Carlo code calculations. J. Mater. Res. Technol. 9(6), 12335–12345 (2020). https://doi.org/10.1016/j.jmrt.2020.08.077

    Article  CAS  Google Scholar 

  45. G. Kilic, S.A.M. Issa, E. Ilik, O. Kilicoglu, H.O. Tekin, A journey for exploration of Eu2O3 reinforcement effect on zinc-borate glasses: Synthesis, optical, physical and nuclear radiation shielding properties. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.09.103

    Article  Google Scholar 

  46. S.A.M. Issa et al., Fabrication, optical characteristic, and nuclear radiation shielding properties of newly synthesisedPbO–GeO2 glasses. Appl. Phys. A Mater. Sci. Process. 126(9), 748 (2020). https://doi.org/10.1007/s00339-020-03928-1

    Article  CAS  Google Scholar 

  47. K.S. Mann, S.S. Mann, Py-MLBUF: development of an online-platform for gamma-ray shielding calculations and investigations. Ann. Nucl. Energy 150, 107845 (2021). https://doi.org/10.1016/j.anucene.2020.107845

    Article  CAS  Google Scholar 

  48. M.S. Al-Buriahi, K.S. Mann, Radiation shielding investigations for selected tellurite-based glasses belonging to the TNW system. Mater. Res. Express 6(10), 105206 (2019). https://doi.org/10.1088/2053-1591/ab3f85

    Article  CAS  Google Scholar 

  49. F. Kulali, Simulation studies on radiological parameters for marble concrete. Emerg. Mater. Res. 9(4), 1–7 (2020). https://doi.org/10.1680/jemmr.20.00307

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taner Kavas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurtulus, R., Kavas, T., Akkurt, I. et al. A comprehensive study on novel alumino-borosilicate glass reinforced with Bi2O3 for radiation shielding applications: synthesis, spectrometer, XCOM, and MCNP-X works. J Mater Sci: Mater Electron 32, 13882–13896 (2021). https://doi.org/10.1007/s10854-021-05964-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05964-w

Navigation