Skip to main content
Log in

Phase transformation in Cu2SnS3 (CTS) thin films through pre-treatment in sulfur atmosphere

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, Cu2SnS3 (CTS) thin films prepared by a two-step sulfurization process were characterized. Cu and Sn metallic layers were first deposited on glass substrates by sputtering and then annealed in-situ while in the sputtering chamber to obtain CuSn (CT) alloys. This was followed by a pre-treatment step at temperatures between 200 and 350 °C in presence of S vapors. Finally, a full sulfurization step was performed at 525 °C to obtain the desired CTS phase. CTS films were characterized using EDX, XRD, Raman spectroscopy, SEM, optical transmission and Van der Pauw methods. It was found that all CTS samples had Cu-poor chemical composition. XRD data revealed only diffraction peaks belonging to CTS structure after the full sulfurization step. Raman spectra of the samples showed that except for the CTS sample pre-treated at 250 °C (CTS-250), which displayed the tetragonal crystal system, the films were dominated by the monoclinic structure. SEM surface images showed dense and polycrystalline microstructure, CTS-200 sample exhibiting a more uniform morphology. Optical band gap values were found to be ranging from 0.92 to 1.19 eV. All samples showed p-type conductivity but the sample pre-treated at 350 °C had higher resistivity and lower carrier concentration values. Overall, the CTS layer prepared using the pre-treatment step at 200 °C exhibited more promising structural and optical properties for potential photovoltaic applications. This work demonstrated that it is possible to change the crystal structure of sulfurized CTS thin films through a pre-treatment step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, H. Sugimoto, IEEE J. Photovolt. 9, 1863–1867 (2019)

    Article  Google Scholar 

  2. M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, X. Hao, Prog. Photovolt. Res. Appl. 28, 629–638 (2020)

    Article  Google Scholar 

  3. H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota, Sol. Energy Mater. Sol. Cells 49, 407–414 (1997)

    Article  CAS  Google Scholar 

  4. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Adv. Energy Mater. 4, 1301465 (2014)

    Article  CAS  Google Scholar 

  5. I.D. Olekseyuk, I.V. Dudchak, L.V. Piskach, J. Alloy Compd. 368, 135–143 (2004)

    Article  CAS  Google Scholar 

  6. M.A. Olgar, M. Tomakin, T. Kucukomeroglu, E. Bacaksız, Mater. Res. Express 6, 056401 (2019)

    Article  CAS  Google Scholar 

  7. P.A. Fernandes, P.M.P. Salomé, AFd. Cunha, J. Phys. D 43, 215403 (2010)

    Article  CAS  Google Scholar 

  8. N. Aihara, H. Araki, A. Takeuchi, K. Jimbo, H. Katagiri, Physica Status Solidi (c) 10, 1086–1092 (2013)

    Article  CAS  Google Scholar 

  9. T. Bayazıt, M.A. Olgar, T. Küçükömeroğlu, E. Bacaksız, M. Tomakin, J. Mater. Sci. 30, 1–7 (2019)

    Google Scholar 

  10. M. Olgar, Superlattice Microstruct. 106366 (2019)

  11. J.Y. Lee, I.Y. Kim, M.P. Surywanshi, U.V. Ghorpade, D.S. Lee, J.H. Kim, Sol. Energy 145, 27–32 (2017)

    Article  CAS  Google Scholar 

  12. U. Chalapathi, B. Poornaprakash, S.-H. Park, Vacuum 131, 22–27 (2016)

    Article  CAS  Google Scholar 

  13. T. Raadik, M. Grossberg, J. Krustok, M. Kauk-Kuusik, A. Crovetto, R. Bolt Ettlinger, O. Hansen, J. Schou, Appl. Phys. Lett. 110, 261105 (2017)

    Article  CAS  Google Scholar 

  14. M.H. Sayed, E.V.C. Robert, P.J. Dale, L. Gütay, Thin Solid Films 669, 436–439 (2019)

    Article  CAS  Google Scholar 

  15. E.V. Robert, J. De Wild, P.J. Dale, Cu2SnS3-based thin film solar cell from electrodeposition-annealing route, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), IEEE, pp. 1–4 (2015)

  16. A. Cho, S. Banu, Y. Cho, S.K. Ahn, J.H. Yun, J.-S. Cho, Sol. Energy 185, 131–145 (2019)

    Article  CAS  Google Scholar 

  17. G. Nabi, F. Amin, J. Jacob, M.B. Tahir, M. Tanveer, Z. Usman, S. Hussain, Phys. B 602, 412498 (2021)

    Article  CAS  Google Scholar 

  18. E.K. Ozsoy, F. Atay, O. Buyukgungor, Sol. Energy 214, 179–188 (2021)

    Article  CAS  Google Scholar 

  19. P.R. Guddeti, P.M.B. Devi, K.R. Reddy, Chin. J. Phys. 67, 458–472 (2020)

    Article  CAS  Google Scholar 

  20. W. Magdy, A. Kanai, F. Mahmoud, E. El Shenawy, S. Khairy, H. Hassan, M. Sugiyama, Jpn. J. Appl. Phys. 59, 105503 (2020)

    Article  CAS  Google Scholar 

  21. G. Yang, X. Li, X. Ji, X. Xu, A. Wang, J. Huang, Y. Zhu, G. Pan, S. Cui, Sol. Energy 208, 206–211 (2020)

    Article  CAS  Google Scholar 

  22. H.D. Shelke, A.C. Lokhande, J.H. Kim, C.D. Lokhande, J. Alloy Compd. 831, 154768 (2020)

    Article  CAS  Google Scholar 

  23. E. Zaretskaya, V. Gremenok, V. Ivanov, A. Stanchik, O. Borodavchenko, D. Zhyhulin, S. Özçelik, N. Akçay, J. Appl. Spectrosc. 87, 488–494 (2020)

    Article  CAS  Google Scholar 

  24. Y. Zhao, L. Chang, X.-F. Dong, H.-X. Zhang, Y. Li, J.-B. Chen, Sol. Energy 201, 190–194 (2020)

    Article  CAS  Google Scholar 

  25. M.A. Olgar, Superlattice Microstruct. 138, 106366 (2020)

    Article  CAS  Google Scholar 

  26. M. Umehara, S. Tajima, Y. Aoki, Y. Takeda, T. Motohiro, Appl. Phys. Express 9, 072301 (2016)

    Article  CAS  Google Scholar 

  27. J. Chantana, K. Tai, H. Hayashi, T. Nishimura, Y. Kawano, T. Minemoto, Sol. Energy Mater. Sol. Cells 206, 110261 (2020)

    Article  CAS  Google Scholar 

  28. S. Rahaman, M.K. Singha, M.A. Sunil, K. Ghosh, Superlattice Microst. 106589 (2020)

  29. Y. Zhao, X. Han, B. Xu, C. Dong, J. Li, X. Yan, J. Mater. Sci.: Mater. Electron. 30, 17947–17955 (2019)

    CAS  Google Scholar 

  30. Y.S. Ocak, Mater. Res. Express 6, 126443 (2020)

    Article  CAS  Google Scholar 

  31. M.R. Pallavolu, C.-D. Kim, V.R.M. Reddy, S. Gedi, C. Park, Sol. Energy 188, 209–217 (2019)

    Article  CAS  Google Scholar 

  32. R. Bodeux, J. Leguay, S. Delbos, Thin Solid Films 582, 229–232 (2015)

    Article  CAS  Google Scholar 

  33. M. He, A.C. Lokhande, I.Y. Kim, U.V. Ghorpade, M.P. Suryawanshi, J.H. Kim, J. Alloy Compd. 701, 901–908 (2017)

    Article  CAS  Google Scholar 

  34. M.S. Abdel-Latif, W. Magdy, T. Tosuke, A. Kanai, A. Hessein, N. Shaalan, K. Nakamura, M. Sugiyama, A. Abdel-Moniem, J. Mater. Sci. 31, 14577–14590 (2020)

    CAS  Google Scholar 

  35. E.S. Hossain, P. Chelvanathan, S.A. Shahahmadi, B. Bais, M. Akhtaruzzaman, S.K. Tiong, K. Sopian, N. Amin, Sol. Energy 177, 262–273 (2019)

    Article  CAS  Google Scholar 

  36. Y. Dong, J. He, X. Li, Y. Chen, L. Sun, P. Yang, J. Chu, J. Alloy Compd. 665, 69–75 (2016)

    Article  CAS  Google Scholar 

  37. Y. Dong, J. He, J. Tao, L. Sun, P. Yang, J. Chu, J. Mater. Sci. 26, 6723–6729 (2015)

    CAS  Google Scholar 

  38. Y. Dong, X. Lu, P. Shen, Y. Chen, F. Yue, P. Xiang, L. Sun, P. Yang, J. Chu, Mater. Sci. Semicond. Process. 84, 124–130 (2018)

    Article  CAS  Google Scholar 

  39. Y. Liu, J. Xu, Y. Yang, Z. Xie, J. Renew. Sustain. Energy 11, 023501 (2019)

    Article  CAS  Google Scholar 

  40. M.A. Olgar, J. Klaer, R. Mainz, L. Ozyuzer, T. Unold, Thin Solid Films 628, 1–6 (2017)

    Article  CAS  Google Scholar 

  41. M.A. Olgar, B.M. Basol, M. Tomakin, A. Seyhan, E. Bacaksiz, Mater. Sci. Semicond. Process. 88, 234–238 (2018)

    Article  CAS  Google Scholar 

  42. L.L. Baranowski, K. McLaughlin, P. Zawadzki, S. Lany, A. Norman, H. Hempel, R. Eichberger, T. Unold, E.S. Toberer, A. Zakutayev, Phys. Rev. Appl. 4, 044017 (2015)

    Article  CAS  Google Scholar 

  43. J. De Wild, E.V. Robert, B. El Adib, D. Abou-Ras, P.J. Dale, Sol. Energy Mater. Sol. Cells 157, 259–265 (2016)

    Article  CAS  Google Scholar 

  44. A. Patterson, Phys. Rev. 56, 978 (1939)

    Article  CAS  Google Scholar 

  45. D.M. Berg, R. Djemour, L. Gütay, S. Siebentritt, P.J. Dale, X. Fontane, V. Izquierdo-Roca, A. Pérez-Rodriguez, Appl. Phys. Lett. 100, 192103 (2012)

    Article  CAS  Google Scholar 

  46. P.K. Sarswat, M. Snure, M.L. Free, A. Tiwari, Thin Solid Films 520, 1694–1697 (2012)

    Article  CAS  Google Scholar 

  47. U. Chalapathi, Y. Jayasree, S. Uthanna, V. Sundara Raja, Physica Status Solidi (a) 210, 2384–2390 (2013)

    Article  CAS  Google Scholar 

  48. D.M. Berg, R. Djemour, L. Gütay, G. Zoppi, S. Siebentritt, P.J. Dale, Thin Solid Films 520, 6291–6294 (2012)

    Article  CAS  Google Scholar 

  49. M. Nakashima, J. Fujimoto, T. Yamaguchi, M. Izaki, Appl. Phys. Express 8, 042303 (2015)

    Article  CAS  Google Scholar 

  50. Y.-X. Guo, W.-J. Cheng, J.-C. Jiang, J.-H. Chu, J. Mater. Sci. 27, 4636–4646 (2016)

    CAS  Google Scholar 

  51. H. Guan, H. Shen, C. Gao, X. He, J. Mater. Sci. 24, 1490–1494 (2013)

    CAS  Google Scholar 

  52. M. Umehara, Y. Takeda, T. Motohiro, T. Sakai, H. Awano, R. Maekawa, Appl. Phys. Express 6, 045501 (2013)

    Article  CAS  Google Scholar 

  53. M. Kamalanathan, H. Shamima, R. Gopalakrishnan, K. Vishista, Mater. Technol. 33, 72–78 (2018)

    Article  CAS  Google Scholar 

  54. B. Patel, R.K. Pati, I. Mukhopadhyay, A. Ray, J. Anal. Appl. Pyrol. 136, 35–43 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the help of A.O. Sarp with sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Olgar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olgar, M.A., Başol, B.M., Tomakin, M. et al. Phase transformation in Cu2SnS3 (CTS) thin films through pre-treatment in sulfur atmosphere. J Mater Sci: Mater Electron 32, 10018–10027 (2021). https://doi.org/10.1007/s10854-021-05660-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05660-9

Navigation