Skip to main content
Log in

Characterization of budding twigs of flower-type zinc oxide nanocrystals for the fabrication and study of nano-ZnO/p-Si heterojunction UV light photodiode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we focused on the study of the structural and optical properties of chemical precipitation-derived special shape (budding twigs of flower-type) ZnO nanostructures for optoelectronic and photodetection applications. The structural and optical properties of the budding twigs of Jasminum flower-like ZnO nanocrystals have been studied and discussed in detail from the XRD, HRTEM, UV–Vis, and photoluminescence spectra. The grown ZnO nanocrystals have been coated on the p-Si substrate to fabricate nano-ZnO/p-Si heterojunction photodiode. The junction properties of the fabricated photodiode were examined by measuring ultraviolet (UV)-light-dependant (λ ~ 366 nm) and dark condition current (I)–voltage (V) as well as capacitance (C)–voltage (V) characteristics. The photodetection properties of the diode in the UV light region have been examined. The diode has well-defined rectifying behavior with a photoresponsivity and external photodetection efficiency of 0.065 and 21.5%, respectively. The observed barrier height and donor concentration under dark condition were ≈ 0.25 eV and 2 × 1017 cm−3, respectively. The change in heterojunction capacitance, barrier height, the depletion width, and other parameters of the heterojunction photodiode under UV illumination has been discussed. The qualities of the device demonstrate that it tends to be used for UV photodetection applications in nano-optoelectronic and photonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article.

References

  1. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Nature Materials 4, 42–46 (2005)

    Article  CAS  Google Scholar 

  2. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)

    Article  CAS  Google Scholar 

  3. D. Vanmaekelbergh, L.K. van Vugt, Nanoscale 3, 2783–2800 (2011)

    Article  CAS  Google Scholar 

  4. A.B. Djurišić, Y.H. Leung, Small 2(8–9), 844–961 (2006)

    Google Scholar 

  5. V.S. Bhati, M. Hojamberdiev, M. Kumar, Energy Rep. 6(4), 46–62 (2020)

    Article  Google Scholar 

  6. H.M. Xiong, Y. Xu, Q.G. Ren, Y.Y. Xia, J. Am. Chem. Soc. 130(24), 7522–7523 (2008)

    Article  CAS  Google Scholar 

  7. R. Sinha, N. Roy, T.K. Mandal, A.C.S. Appl, Mater. Interfaces 12, 33428–33438 (2020)

    Article  CAS  Google Scholar 

  8. L. Zhang, L. Zhu, X. Li, Z. Xu, W. Wang, X. Bai, Sci. Rep. 7, 45143 (2017)

    Article  CAS  Google Scholar 

  9. A.B. Djurišic, A.M.C. Ng, X.Y. Chen, Progress Quant Electron 34(4), 191–259 (2010)

    Article  CAS  Google Scholar 

  10. M.H. Huang, S. Mao, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R. and Yang, P. , Room-temperature ultraviolet nanowire nanolasers. Science 292(5523), 1897–9 (2001)

    Article  CAS  Google Scholar 

  11. Nakamura, Y., 2006. Solution-growth of zinc oxide nanowires for dye-sensitized solar cells. Materials, Nnin Reu, Research Accomplishments, pp. 74–75

  12. Y. Jin, J. Wang, B. Sun, J.C. Blakesley, N.C. Greenham, Nano Lett. 8(6), 1649–1653 (2008)

    Article  CAS  Google Scholar 

  13. Y.L. Chu, L.W. Ji, H.Y. Lu, S.J. Young, I.T. Tang, T.T. Chu, J.S. Guo, Y.T. Tsai, J. Electrochem. Soc. 167, 027522 (2020)

    Article  CAS  Google Scholar 

  14. L. Guo, Y.L. Ji, H. Xu, P. Simon, Z. Wu, J. Am. Chem. Soc. 124, 14864–14865 (2002)

    Article  CAS  Google Scholar 

  15. M.L. Pivert, R. Poupart, M.C. Gnambodoe, N. Martin, Y.L. Wang, Microsyst. Nanoeng. 5, 57 (2019)

    Article  CAS  Google Scholar 

  16. A.K. Bhunia, P.K. Samanta, S. Saha, T. Kamilya, Appl. Phys. Lett. 103, 143701 (2013)

    Article  CAS  Google Scholar 

  17. Y.W. Zhu, H.Z. Zhang, X.C. Sun, S.Q. Feng, J. Xu, Q. Zhao, B. Xiang, R.M. Wang, D.P. Yu, Appl. Phys. Lett. 83, 144 (2003)

    Article  CAS  Google Scholar 

  18. X. Xu, C. Xu, J. Hu, J. Appl. Phys. 116, 103105 (2014)

    Article  CAS  Google Scholar 

  19. D.I. Son, H.Y. Yang, T.W. Kim, W.I. Park, Compos. Part B Eng. 69, 154–158 (2015)

    Article  CAS  Google Scholar 

  20. Xi. Liu, G. Leilei, Q. Zhang, W. Jiyuan, Y. Long, Z. Fan, Nat. Commun. 5, 4007 (2014)

    Article  CAS  Google Scholar 

  21. K. Liu, M. Sakurai, M. Aono, Sensors 10(9), 8604–8634 (2010)

    Article  CAS  Google Scholar 

  22. P. Kumar, J. Liu, P. Ranjan, Y. Hu, S. Yamijala, S.K. Pati, J. Irudayaraj, G.J. Cheng, Small 1703346, 1–10 (2018)

    Google Scholar 

  23. E. Matei, L. Ion, S. Antohe, R. Neumann, I. Enculescu, Nanotechnology 21, 10 (2010)

    Article  CAS  Google Scholar 

  24. P. Ranjan, P. Tiwary, A.K. Chakraborty, R. Mahapatra, A.D. Thakur, J. Mater. Sci. Mater. Electron. 29, 15946–15956 (2018)

    Article  CAS  Google Scholar 

  25. P. Ranjan, T.K. Sahu, R. Bhushan, S. Yamijala, D.J. Late, P. Kumar, A. Vinu, Adv. Mater. 31, 1900353 (2019)

    Article  CAS  Google Scholar 

  26. P. Ranjan, S. Agrawal, A. Sinha, T.R. Rao, J. Balakrishnan, A.D. Thakur, Sci. Rep. 8, 1–13 (2018)

    Google Scholar 

  27. P. Ranjan, A. Tulika, R. Laha, J. Balakrishnan, J. Raman Spectrosc. 48(4), 586–591 (2017)

    Article  CAS  Google Scholar 

  28. P. Ranjan, P. Verma, S. Agrawal, T.R. Rao, S.K. Samanta, A.D. Thakur, Mat. Chem. Phys. 226, 350–355 (2019)

    Article  CAS  Google Scholar 

  29. H.D. Cho, A.S. Zakirov, S.U. Yuldashev, C.W. Ahn, Y.K. Yeo, T.W. Kang, Nanotechnology 23, 115401 (2012)

    Article  CAS  Google Scholar 

  30. S.K. Singh, P. Hazra, S. Tripathi, P. Chakrabarti, J. Mater. Sci. Mater. Electron. 26, 7829–7836 (2015)

    Article  CAS  Google Scholar 

  31. A.C. Saritha, M.R. Shijeesh, L.S. Vikas, R.R. Prabhu, M.K. Jayaraj, J. Phys. D Appl. Phys. 49, 29 (2016)

    Article  CAS  Google Scholar 

  32. A. Özmen, S. Aydogan, M. Yilmaz, Ceram. Int. 45(12), 14794–14805 (2019)

    Article  CAS  Google Scholar 

  33. R. Saha, A. Karmakar, S. Chattopadhya, Opt. Mater. 105, 109928 (2020)

    Article  CAS  Google Scholar 

  34. T.H. Flemban, M.A. Haque, I. Ajia, N. Alwadai, S. Mitra, T. Wu, I.S. Roqan, A.C.S. Appl, Mater. Interfaces 9, 37120–37127 (2017)

    Article  CAS  Google Scholar 

  35. L.J. Mandalapu, Z. Yang, S. Chu, J.L. Liu, Appl. Phys. Lett. 92, 122101–122103 (2008)

    Article  CAS  Google Scholar 

  36. J. Yu, N. Tian, Phys. Chem. Chem. Phys. 18, 24129–24133 (2016)

    Article  CAS  Google Scholar 

  37. M. Dutta, D. Basak, Appl. Phys. Lett. 2008(92), 212112 (2008)

    Article  CAS  Google Scholar 

  38. V. Kabra, L. Aamir, M.M. Malik, Beilstein J. Nanotechnol. 5, 2216–2221 (2014)

    Article  CAS  Google Scholar 

  39. A.K. Bhunia, T. Kamilya, S. Saha, Chem. Select 1, 2872–2882 (2016)

    CAS  Google Scholar 

  40. A.K. Bhunia, S. Saha, BioNanoScience 10, 89–105 (2020)

    Article  Google Scholar 

  41. N.A. Al-Hamdani, R.D. Al-Alawy, S.J. Hassan, IOSR J. Comput. Eng. 16, 11 (2014)

    Article  Google Scholar 

  42. A.K. Bhunia, S. Saha, Adv. Sci. Eng. Med. 11(7), 644–651 (2019)

    Article  CAS  Google Scholar 

  43. L. Xu, G. Zheng, H. Wua, J. Wang, F. Gu, J. Su, F. Xian, Z. Liu, Opt. Mater. 35, 1582 (2013)

    Article  CAS  Google Scholar 

  44. J.I. Pankove, Optical Processes in Semiconductors (Courier Dover Publications, New York, 2012).

    Google Scholar 

  45. H.A. Mohamed, Optoelectron. Adv. Mater. 6, 389 (2012)

    CAS  Google Scholar 

  46. T.N. Ghosh, A.K. Bhunia, S.S. Pradhan, S.K. Sarkar, J. Mater, Sci. Mater. Electron. 31, 15919–15930 (2020)

    Article  CAS  Google Scholar 

  47. S.B. Aziz, R.T. Abdulwahid, H.A. Rsaul, H.M. Ahmed, In situ synthesis of CuS nanoparticle with a distinguishable SPR peak in NIR region. J. Mater. Sci. 27(5), 4163–4171 (2016)

    CAS  Google Scholar 

  48. A. Van Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, J. Lumin. 87–89, 454–456 (2000)

    Article  Google Scholar 

  49. A.B. Djurišić, Y.H. Leung, K.H. Tam, L. Ding, W.K. Ge, H.Y. Chen, S. Gwo, Appl. Phys. Lett 88, 103107 (2006)

    Article  CAS  Google Scholar 

  50. A.K. Bhunia, S. Saha, Luminescence 36(1), 149–62 (2021)

    Article  CAS  Google Scholar 

  51. Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, M.J. Mcdermott, M.A. Rodriguez, H. Konishi, H. Xu, Complex and oriented ZnO nanostructures. Nat. Mater. 2, 821–826 (2003)

    Article  CAS  Google Scholar 

  52. A.K. Bhunia, P.K. Jha, S. Saha, BioNanoScience 10, 917–927 (2020)

    Article  Google Scholar 

  53. P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttingen 26, 98 (1918)

    Google Scholar 

  54. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Cryst. 11, 102 (1978)

    Article  CAS  Google Scholar 

  55. B.L. Chandrasekar, P. Raji, R. Chandramohan, R. Vijayalakshmi, G. Devi, P. Shunmugasundaram, P. Sindhu, J. Nanoelectron. Optoelectron. 8(4), 369 (2013)

    Article  CAS  Google Scholar 

  56. V.D. Mote, Y. Purushotham, B.N. Dole, WilliamsonHall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl Phys. 6(6), 1–8 (2012)

    Google Scholar 

  57. S.P. Mandal, K. Das, A. Dhar, S.K. Ray, Nanotechnology 18, 095606 (2007)

    Article  CAS  Google Scholar 

  58. V. Kumar, K. Singh, M. Jain, K.A. Manju, J. Sharma, A. Vij, A. Thakur, Role of Cu in engineering the optical properties of SnO2 nanostructures: structural, morphological and spectroscopic studies. Appl. Surf. Sci. 444, 552–558 (2018)

    Article  CAS  Google Scholar 

  59. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981).

    Google Scholar 

  60. S. Majumder, P. Baherji, J Appl Phys 105,043704 (2009)

  61. F. Greutert, G. Blatter, Semicond. Sci. Technol. 5, 111–137 (1990)

    Article  Google Scholar 

  62. S. Mridha, D. Basak, Semicond. Sci. Technol. 21, 928 (2006)

    Article  CAS  Google Scholar 

  63. S. Aksoy, Y. Caglar, Superlattices Microstruct 51, 613–625 (2012)

    Article  CAS  Google Scholar 

  64. T.L. Tansley, J. Appl. Phys. 55(2), 454 (1984)

    Article  CAS  Google Scholar 

  65. G.M. Ali, P. Chakrabarti, IEEE Photon J. 2, 784 (2010)

    Article  Google Scholar 

  66. S. Mridha, D. Basak, J. Appl. Phys. 101, 083102 (2007)

    Article  CAS  Google Scholar 

  67. S. Chirakkara, S.B. Krupanidhi, Study of n-ZnO/p-Si (100) thin film heterojunctions by pulsed laser deposition without buffer layer. Thin Solid Films 520(18), 5894–5899 (2012)

    Article  CAS  Google Scholar 

  68. S.K. Nandi, S. Chatterjee, S.K. Samanta, P.K. Bose, C.K. Maiti, Bull. Mater. Sci. 26, 693 (2003)

    Article  CAS  Google Scholar 

  69. S. Adachi, Hand Book on Physical Properties of Semiconductors II–VI Compound Semiconductors, vol. 3 (Springer, New York, 2004).

    Google Scholar 

  70. F.B. Kevin, The Physics of Semiconductors with Application to Optoelectronics Devices (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  71. S. Mridha, M. Dutta, D. Basak, J. Mater. Sci. Mater. Electron. 20, 376–379 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to UGC and DST for their constant financial assistance through SAP and FIST program to Department of Physics of Vidyasagar University. The author AKB is thankful to the Department of Physics, Government General Degree College at Gopiballavpur-II. The authors are acknowledged to CRF, IIT Kharagpur.

Funding

This research is supported by UGC and DST for their constant financial assistance through SAP and FIST program. Author AKB is thankful to Dept. of Higher Education, Science and Technology and Biotechnology, Government of West Bengal, India.

Author information

Authors and Affiliations

Authors

Contributions

AKB assisted the problem of the research, carried out the measurement, and manuscript writing. SS assisted the measurement, discussed and helped in drafting the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Amit Kumar Bhunia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving humans and animals’ statement

This article does not contain any studies involving humans and animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1159 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhunia, A.K., Saha, S. Characterization of budding twigs of flower-type zinc oxide nanocrystals for the fabrication and study of nano-ZnO/p-Si heterojunction UV light photodiode. J Mater Sci: Mater Electron 32, 9912–9928 (2021). https://doi.org/10.1007/s10854-021-05649-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05649-4

Navigation