Skip to main content
Log in

Mn-doped (Bi0.5Na0.5) TiO3 thin film with low leakage current density and high ferroelectric performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The films of (Bi0.5Na0.5)(Ti1-xMnx)O3-δ (BNTMx) were deposited on the substrates via the sol–gel method. The influence of the doping content of Mn on the microstructures and ferroelectric properties of the films were investigated. In addition, the valence states of Mn ions were analyzed. The results show that Mn ions have dissolved into the lattice of Bi0.5Na0.5TiO3 (BNT) without forming any secondary phase. When the doping content of Mn is 0.04, the film of BNTMx possesses a dense microstructure, maximum of remnant polarization (20.2 µC·cm−2), minimum value of leakage current density (3.31 × 10–5 A· cm−2), which shows good ferroelectric property and insulation performance. The results of XPS indicate that Mn ions exist in form of Mn2+, Mn3+ and Mn4+. The ratio of the amount of Mn4+ to that of Mn3+ and Mn2+ is 5.5:1. In this work, relationship between valence states of Mn ions and leakage current densities or ferroelectric property of the films were investigated in detail. The results will provide a new way for future applications of BNT-based multi-functional devices and an alternative for environmental-friendly ferroelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G.T. Hwang, V. Annapureddy, J.H. Han, D.J. Joe, C. Baek, D.Y. Park, D.H. Kim, J.H. Park, C.K. Jeong, K.I. Park, J.J. Choi, D.K. Kim, J. Ryu, K.J. Lee, Self-powered wireless sensor node enabled by an aerosol-deposited PZT flexible energy harvester. Adv. Energy Mater. 6, 1600237 (2016)

    Article  CAS  Google Scholar 

  2. X. Gao, J. Wu, Y. Yu, Z. Chu, H. Shi, S. Dong, Giant piezoelectric coefficients in relaxor piezoelectric ceramic PNN-PZT for vibration energy harvesting. Adv. Funct. Mater. 28, 1706895 (2018)

    Article  CAS  Google Scholar 

  3. Y. Zhang, M. Xie, J. Roscow, Y. Bao, K. Zhou, D. Zhang, C.R. Bowen, Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications. J. Mater. Chem. A 5, 6569–6580 (2017)

    Article  CAS  Google Scholar 

  4. A. Datta, D. Mukherjee, S. Witanachchi, P. Mukherjee, Hierarchically ordered nano-heterostructured PZT thin films with enhanced ferroelectric properties. Adv. Funct. Mater. 24, 2638–2647 (2014)

    Article  CAS  Google Scholar 

  5. M. Davies, E. Aksel, J.L. Jones, Enhanced high-temperature piezoelectric coefficients and thermal stability of Fe- and Mn-substituted Na0.5Bi0.5TiO3 Ceramics. J. Am. Ceram. Soc. 94, 1314–1316 (2011)

    Article  CAS  Google Scholar 

  6. M. Tyagi, M. Kumari, R. Chatterjee, P. Sharma, Large magnetoelectric response in modified BNT based ternary piezoelectric [72.5(Bi1/2Na1/2TiO3)- 22.5(Bi1/2K1/2TiO3)-5(BiMg1/2Ti1/2O3)]-magnetostrictive (NiFe2O4) particulate (0–3) composites. Appl. Phys. Lett. 106, 202904 (2015)

    Article  CAS  Google Scholar 

  7. Y.M. Liu, Y.J. Wang, M.J. Chow, N.Q. Chen, F.Y. Ma, Y.H. Zhang, J.Y. Li, Glucose suppresses biological ferroelectricity in aortic elastin. Phys. Rev. Lett. 110, 168101 (2013)

    Article  CAS  Google Scholar 

  8. V.S. Bystrov, E. Paramonova, I. Bdikin, S. Kopyl, A. Heredia, R.C. Pullar, A.L. Kholkin, Bioferroelectricity: diphenylalanine peptide nanotubes computational modeling and ferroelectric properties at the nanoscale. Ferroelectrics 440, 3–24 (2012)

    Article  CAS  Google Scholar 

  9. J.J. Zhu, J.Z. Zhang, K. Jiang, H.W. Zhang, Z.G. Hu, H.S. Luo, J.H. Chu, Coexistence of ferroelectric phases and phonon dynamics in relaxor ferroelectric Na0.5Bi0.5TiO3 based single crystals. J. Am. Ceram. Soc. 99, 2408–2414 (2016)

    Article  CAS  Google Scholar 

  10. X. Jia, J. Zhang, Y. Gao et al., Enhanced bipolar fatigue-resistance and optical temperature sensing in Er-modified 0.94(Bi0.5Na0.5)TiO3–0.06(K0.5Na0.5)NbO3 lead-free ceramics. Mater. Res. Bull. 89, 11–15 (2017)

    Article  CAS  Google Scholar 

  11. B. Sun, P. Han, W.X. Zhao, Y.H. Liu, P. Chen, White-light-controlled magnetic and ferroelectric properties in multiferroic BiFeO3 square nanosheets. J. Phys. Chem. C 118, 18814–18819 (2014)

    Article  CAS  Google Scholar 

  12. L.J. Wei, B. Sun, W.X. Zhao, H.W. Li, P. Chen, Light regulated I-V hysteresis loop of Ag/BiFeO3/FTO thin film. Appl. Surf. Sci. 393, 325–329 (2017)

    Article  CAS  Google Scholar 

  13. P.P. Zheng, B. Sun, Y.Z. Chen et al., Photo-induced negative differential resistance in a resistive switching memory device based on BiFeO3/ZnO heterojunctions. Appl. Mater. Today. 14, 21–28 (2019)

    Article  Google Scholar 

  14. W. Sakamoto, N. Makino, B.Y. Lee, T. Iijima, M. Moriya, T. Yogo, Influence of volatile element composition and Mn doping on the electrical properties of lead-free piezoelectric (Bi0.5Na0.5)TiO3 thin films. Sensor. Actuat. A: Phys. 200, 60–67 (2013)

    Article  CAS  Google Scholar 

  15. J. Chen, Z. Tang, R. Tan, Y. Bai, S. Zhao, H. Zhang, Domain switching contribution to the ferroelectric, fatigue and piezoelectric properties of lead-free Bi0.5(Na0.85K0.15)0.5TiO3 films. RSC Adv. 6, 33834–33842 (2016)

    Article  CAS  Google Scholar 

  16. B.N. Rao, R. Datta, S.S. Chandrashekaran et al., Local Structural Disorder and Its Influence on the Average Global Structure and Polar Properties in Na0.5Bi0.5TiO3 (Rev. B, Phys, 2013). https://doi.org/10.1103/PhysRevB.88.224103

    Book  Google Scholar 

  17. E. Birks, M. Dunce, R. Ignatans et al., Structure and dielectric properties of Na0.5Bi0.5TiO3-CaTiO3 solid solutions. J. Appl. Phys. 119, 074102 (2016)

    Article  CAS  Google Scholar 

  18. Z.G. Gao, Z.R. Jia, K.K. Wang, X.H. Liua, L. Bi, G.L. Wu, Simultaneous enhancement of recoverable energy density and efficiency of lead-free relaxor-ferroelectric BNT-based ceramics. Chem. Eng. J. 402, 125951 (2020)

    Article  CAS  Google Scholar 

  19. M.S. Mirshekarloo, L. Zhang, K. Yao, T. Sritharan, Electromechanical properties and fatigue of antiferroelectric (Pb, La)(Zr, Sn, Ti)O3 thin film cantilevers fabricated by micromachining. Sensor. Actuat. A: Phys. 187, 127–131 (2012)

    Article  CAS  Google Scholar 

  20. S.A. Dargham, F. Ponchel, N. Abboud, M. Soueidan, A. Ferry, R. Desfeux, J. Assaad, D. Remiens, D. Zaouk, Synthesis and electrical properties of lead-free piezoelectric Bi0.5Na0.5TiO3 thin films prepared by sol-gel method. J. Eur. Ceram. Soc. 38, 1450–1455 (2018)

    Article  CAS  Google Scholar 

  21. M. Bousquet, J.R. Duclère, C. Champeaux, A. Boulle, P. Marchet, A. Catherinot, A. Wu, P.M. Vilarinho, S. Députier, M. Guilloux-Viry, A. Crunteanu, B. Gautier, D. Albertini, C. Bachelet, Macroscopic and nanoscale electrical properties of pulsed laser deposited (100) epitaxial lead-free Na0.5Bi0.5TiO3 thin films. J. Appl. Phys. 107, 034102 (2010)

    Article  CAS  Google Scholar 

  22. R. Ding, D. Wang, D. Chu, S. Li, Crystallographic orientation dependence on electrical properties of (Bi, Na)TiO3-based thin films. J. Am. Ceram. Soc. 96, 3530–3535 (2013)

    Article  CAS  Google Scholar 

  23. Z.S. Xu, X.H. Hao, An, Structure and dielectric properties of (Na0.5Bi0.5)TiO3-SrTiO3 thick films derived from polyvinylpyrrolidone-modified chemical solution. J. Mater. Sci. Mater. Electron. 26, 4318–4324 (2015)

    Article  CAS  Google Scholar 

  24. C.C. Diao, C.F. Yang, J.J. Lin, Crystallization and electrical characteristics of 0.95(Na0.5Bi0.5)TiO3–0.05BaTiO3 thin films under different annealing temperature and atmosphere. J. Nanosci. Nanotechnol. 11, 10562–10566 (2011)

    Article  CAS  Google Scholar 

  25. M. Zannen, M. Dietze, H. Khemakhem, M. Es-Souni, Ferroelectric (Na1/2Bi1/2)TiO3 thin films showing photoluminescence properties. Appl. Phys. A 117, 1485–1490 (2014)

    Article  CAS  Google Scholar 

  26. S.K. Acharya, B.G. Ahn, C.U. Jung, J.H. Koh, I.H. Choi, S.K. Lee, Effect of Rb doping on ferroelectric and piezoelectric properties of Bi0.5Na0.5TiO3-BaTiO3 thin films. J. Alloy. Compd. 603, 248–254 (2014)

    Article  CAS  Google Scholar 

  27. C.H. Yang, Y.J. Han, X.S. Sun, J. Chen, J. Qian, L.X. Chen, Effects of Nd3+-substitution for Bi-site on the leakage current, ferroelectric and dielectric properties of Na0. 5Bi0. 5TiO3 thin films. Ceram. Int. 44, 6330–6336 (2018)

    Article  CAS  Google Scholar 

  28. M. Zannen, H. Khemakhem, A. Kabadou, M. Es-Souni, Structural, Raman and electrical studies of 2 at. % Dy-doped NBT. J. Alloy. Compd. 555, 56–61 (2013)

    Article  CAS  Google Scholar 

  29. W. Huang, S. He, A. Hao, N. Qin, M. Ismail, J. Wu, D. Bao, Structural phase transition, electrical and photoluminescent properties of Pr3+-doped (1–x)Na0.5Bi0.5TiO3-xSrTiO3 lead-free ferroelectric thin films. J. Eur. Ceram. Soc. 38, 2328–2334 (2018)

    Article  CAS  Google Scholar 

  30. F.J. Geng, C.H. Yang, P.P. Lv et al., Effects of Zn2+ doping content on the structure and dielectric tunability of non-stoichiometric [(Na0.7K0.2Li0.1)0.45Bi0.55]TiO3+δ thin film. J. Mater. Sci.: Mater Electron. 27, 2195–2200 (2016)

    CAS  Google Scholar 

  31. J. Qian, C.H. Yang, Y.J. Han, X.Q. Hu, S.X. Li, F.Y. Jiao, X.B. Du, The crystallization and dielectric tunability of Zn doped Na0.5Bi0.5TiO3 thin films. Ceram. Int. 42, 976–981 (2016)

    Article  CAS  Google Scholar 

  32. J. Wang, Y. Li, N. Sun, Q. Zhang, L. Zhang, X. Hao, X. Chou, Effects of Fe3+ doping on electrical properties and energy-storage performances of the (Na0.85K0.15)0.5Bi0.5TiO3 thick films prepared by sol-gel method. J. Alloy. Compd. 727, 596–602 (2017)

    Article  CAS  Google Scholar 

  33. Effect of precursor solution concentration, J. Q. Sun, C. H. Yang, J. H. Song, Y. Y. Zhou, Q. Yao, X. S. Sun, The microstructure, ferroelectric and dielectric behaviors of Na0.5Bi0.5(Ti, Fe)O3 thin films synthesized by chemical solution deposition. Ceram. Int. 43, 2033–2038 (2017)

    Article  CAS  Google Scholar 

  34. D. Do, J.W. Kim, S.S. Kim, Effects of Dy and Mn co-doping on ferroelectric properties of BiFeO3 thin films. J. Am. Ceram. Soc. 94, 2792–2795 (2011)

    Article  CAS  Google Scholar 

  35. Y.Z. Wang, R.R. Liu, J. Qian, X.S. Sun, Y.J. Han, C.H. Yang, Reduced leakage current, enhanced ferroelectric and dielectric properties in Mn-doped BiFeO3 thin film composited with TiO2 layers. Ceram. Int. 45, 12285–12289 (2019)

    Article  CAS  Google Scholar 

  36. Y. Shuai, S. Zhou, D. Bürger, H. Reuther, I. Skorupa, V. John, M. Helm, H. Schmidt, Decisive role of oxygen vacancy in ferroelectric versus ferromagnetic Mn-doped BaTiO3 thin films. J. Appl. Phys. 109, 084105 (2011)

    Article  CAS  Google Scholar 

  37. W. Xu, X. Li, Q. Li, Q. Deng, J.Z. Zhang, K. Jiang, J. Chu, Spectroscopic study of phase transitions in ferroelectric Bi0.5Na0.5Ti1-xMnxO3-δ films with enhanced ferroelectricity and energy storage ability. J. Alloy. Compd. 768, 377–386 (2018)

    Article  CAS  Google Scholar 

  38. Y. Wu, X. Wang, C. Zhong, L. Li, Effect of Mn doping on microstructure and electrical properties of the (Na0.85K0.15)0.5Bi0.5TiO3 thin films prepared by sol-gel method. J. Am. Ceram. Soc. 94, 3877–3882 (2011)

    Article  CAS  Google Scholar 

  39. C.C. Jin, F.F. Wang, C.M. Leung, Q.R. Yao, Y.X. Tang, T. Wang, W.Z. Shi, Enhanced ferroelectric and piezoelectric response in Mn-doped Bi0.5Na0.5TiO3-BaTiO3 lead-free film by pulsed laser deposition. Appl. Surf. Sci. 283, 348–351 (2013)

    Article  CAS  Google Scholar 

  40. Y. Guo, H. Fan, C. Long, J. Shi, L. Yang, S. Lei, Electromechanical and electrical properties of Bi0.5Na0.5Ti1−xMnxO3−δ ceramics with high remnant polarization. J. Alloy. Compd. 610, 189–195 (2014)

    Article  CAS  Google Scholar 

  41. M.K. Niranjan, T. Karthik, S. Asthana, J. Pan, U.V. Waghmare, Theoretical and experimental investigation of Raman modes, ferroelectric and dielectric properties of relaxor Na0.5Bi0.5TiO3. J. Appl. Phys. 113, 194106 (2013)

    Article  CAS  Google Scholar 

  42. H. Lidjici, B. Lagoun, M. Berrahal, M. Rguitti, M.A. Hentatti, H. Khemakhem, XRD, Raman and electrical studies on the (1–x)(Na0.5Bi0.5)TiO3-xBaTiO3 lead free ceramics. J. Alloy. Compd. 618, 643–648 (2015)

    Article  CAS  Google Scholar 

  43. J. Suchanicz, I.J. Sumara, T.V. Kruzina, Raman and infrared spectroscopy of Na0.5Bi0.5TiO3-BaTiO3 ceramics. J. Electroceram. 27, 45–50 (2011)

    Article  CAS  Google Scholar 

  44. Y.Y. Wu, X.H. Wang, C.F. Zhong, L.T. Li, Effect of Na/K excess on the electrical properties of Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 thin films prepared by sol-gel processing. Thin Solid Films 519, 4798–4803 (2011)

    Article  CAS  Google Scholar 

  45. I.G. Siny, E. Husson, J.M. Beny, S.G. Lushnikov, E.A. Rogacheva, P.P. Syrnikov, Raman scattering in the relaxor-type ferroelectric Na1/2Bi1/2TiO3. Ferroelectrics 248, 57 (2000)

    Article  CAS  Google Scholar 

  46. N. Pradhani, P.K. Mahapatra, R.N.P. Choudhary, A.K. Jena, J. Mohanty, Investigation on the effect of Mn substitution on the structural, electrical and ferroelectric characteristics of Bi0.5Na0.5TiO3 ceramic. Mater. Res. Bull. 119, 110566 (2019)

    Article  CAS  Google Scholar 

  47. M.M. Hejazi, E. Taghaddos, A. Safari, Reduced leakage current and enhanced ferroelectric properties in Mn-doped Bi0.5Na0.5TiO3-based thin films. J. Mater. Sci. 48, 3511–3516 (2013)

    Article  CAS  Google Scholar 

  48. Z.H. Zhou, J.M. Xue, W.Z. Li, J. Wang, H. Zhu, J.M. Miao, Ferroelectric and electrical behavior of (Na0.5Bi0.5)TiO3 thin films. Appl. Phys. Lett. 85, 804–806 (2004)

    Article  CAS  Google Scholar 

  49. V.D. Castro, G. Polzonetti, XPS study of MnO oxidation. J. Electron Spectrosc. Relat. Phenom. 48, 117–123 (1989)

    Article  Google Scholar 

  50. S. Sharma, S. Chaudhary, S.C. Kashyap, S.K. Sharma, Room temperature ferromagnetism in Mn doped TiO2 thin films: electronic structure and Raman investigations. J. Appl. Phys. 109, 083905 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors will acknowledge support from Joint Fund of National Natural Science Foundation of China (U19A2087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, M., Si, Z., Men, E. et al. Mn-doped (Bi0.5Na0.5) TiO3 thin film with low leakage current density and high ferroelectric performance. J Mater Sci: Mater Electron 32, 7249–7258 (2021). https://doi.org/10.1007/s10854-021-05435-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05435-2

Navigation