Skip to main content
Log in

Influence of P content on SMPs in Fe–Si–B–P–C–Cu–Nb amorphous alloys under longitudinal field annealing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The influence of P content on Curie temperature, magnetic properties and microstructures of Fe81.5Si3B10+xP3.5−xC0.2Cu0.8Nb1 (x = 0, 1, 2, and 3 at.%) alloys subjected to magnetic field annealing has been studied. Here, the decrease in P content can improve Curie temperature of alloys from about 575 to 584 K, which increases the operating temperature of magnetic device. Via optimal field annealing technique, the amorphous alloy with x =  3 exhibits good soft magnetic properties, including saturation magnetic flux density of 1.53 T, high effective permeability above 12,000, low coercivity below 3 A/m, and low core loss around 0.18 W/kg. The hysteresis loops show that tuning down the content of P relative to B can increase the saturation magnetic flux density of alloy system. Besides, the investigation about the microstructures of alloys annealed at optimal conditions indicates that longitudinal magnetic field annealing can improve the stability of amorphous phase, thereby ensuring the amorphous structure annealed at a higher annealing temperature compared with the general annealing for alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Xu, Y.Z. Yang, Q.S. Yan, C.F. Fan, F.T. Hou, Z.W. Xie, Effect of microalloying on crystallization behavior, magnetic properties and bending ductility of high Fe content FeSiBCuPC alloys. J. Alloy Compd. 777, 499–505 (2019)

    Article  CAS  Google Scholar 

  2. F. Wang, A. Inoue, Y. Han, S.L. Zhu, F.L. Kong, E. Zanaeva, G.D. Liu, E. Shalaan, F. Al-Marzouki, A. Obaid, Excellent soft magnetic Fe-Co-B-based amorphous alloys with extremely high saturation magnetization above 1.85 T and low coercivity below 3 A/m. J. Alloy Compd. 711, 132–142 (2017)

    Article  CAS  Google Scholar 

  3. A. Urata, H. Matsumoto, S. Sato, A. Makino, High Bs nanocrystalline alloys with high amorphous-forming ability. J. Appl. Phys. 105, 07A324-1-07A324-3 (2009)

    Article  Google Scholar 

  4. H.R. Lashgari, D. Chu, S.S. Xie, H.D. Sun, M. Ferry, S. Li, Composition dependence of the microstructure and soft magnetic properties of Fe-based amorphous/nanocrystalline alloys: a review study. J. Non-Cryst. Solids 391, 61–82 (2014)

    Article  CAS  Google Scholar 

  5. F. Wang, A. Inoue, Y. Han, F.L. Kong, S.L. Zhu, E. Shalaan, F. Al-Marzouki, A. Obaid, Soft magnetic Fe-Co-based amorphous alloys with extremely high saturation magnetization exceeding 1.9 T and low coercivity of 2 A/m. J. Alloy Compd. 723, 376–384 (2017)

    Article  CAS  Google Scholar 

  6. A. Takeuchi, A. Inoue, Mixing enthalpy of liquid phase calculated by miedema’s scheme and approximated with sub-regular solution model for assessing forming ability of amorphous and glassy alloys. Intermetallics 18, 1779–1789 (2010)

    Article  CAS  Google Scholar 

  7. A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 12, 2817–2829 (2005)

    Article  Google Scholar 

  8. B. Majumdar, D. Akhtar, Structure and coercivity of nanocrystalline Fe–Si–B–Nb–Cu alloys. Bull. Mater. Sci. 28, 395–399 (2005)

    Article  CAS  Google Scholar 

  9. K.G. Pradeep, G. Herzer, P. Choi, D. Raabe, Atom probe tomography study of ultrahigh nanocrystallization rates in FeSiNbBCu soft magnetic amorphous alloys on rapid annealing. Acta Mater. 68, 295–309 (2014)

    Article  CAS  Google Scholar 

  10. B.S. Berry, W.C. Pritchet, Magnetic annealing and directional ordering of an amorphous ferromagnetic alloy. Phys. Rev. Lett. 34, 1022–1025 (1975)

    Article  CAS  Google Scholar 

  11. S. Kwon, S. Kim, H. Yim, Improvement of saturation magnetic flux density in Fe–Si–B–Nb–Cu nanocomposite alloys by magnetic field annealing. Curr. Appl. Phys. 20, 37–42 (2020)

    Article  Google Scholar 

  12. Y. Yoshizawa, K. Yamauchi, Effects of magnetic field annealing on magnetic properties in ultrafine crystalline Fe–Cu–Nb–Si–B alloys. IEEE Trans. Magn. 25, 3324–3326 (1989)

    Article  CAS  Google Scholar 

  13. H. Li, A.N. He, A.D. Wang, L. Xie, Q. Li, C.L. Zhao, G.Y. Zhang, P.B. Chen, Improvement of soft magnetic properties for distinctly high Fe content amorphous alloys via longitudinal magnetic field annealing. J. Magn. Magn. Mater. 471, 110–115 (2019)

    Article  CAS  Google Scholar 

  14. I. Škorvánek, J. Marcin, J. Turčanová, J. Kováč, P. Švec, Improvement of soft magnetic properties in Fe38Co38Mo8B15Cu1 amorphous and nanocrystalline alloys by heat treatment in external magnetic field. J. Alloy. Compd. 504, S135–S138 (2010)

    Article  Google Scholar 

  15. M. Ghanaatshoar, N. Nabipour, M.M. Tehranchi, S.M. Hamidi, S.M. Mohseni, The influence of laser annealing in the presence of longitudinal weak magnetic field on asymmetrical magnetoimpedance response of CoFeSiB amorphous ribbons. J. Non-Cryst. Solids 354, 5150–5152 (2008)

    Article  CAS  Google Scholar 

  16. X.H. Zhang, Y.Q. Dong, A.N. He, L. Xie, F.S. Li, L. Chang, H.Y. Xiao, H. Li, T. Wang, Improvement of SMPs in Fe–Si–B–P–C–Cu–Nb alloys via harmonizing P and B. J. Magn. Magn. Mater. 506, 199757 (2020)

    Google Scholar 

  17. Y.S. Tyan, L.E. Toth, Slater pauling magnetization curve in transition metal phosphides. J. Electron. Mater. 3, 1–6 (1974)

    Article  CAS  Google Scholar 

  18. Y. Kakehashi, O. Hosohata, Curie-temperature “Slater-Pauling Curve". J. Phys. Colloque 49, C8–C73 (1988)

    Google Scholar 

  19. C. Takahashi, M. Ogura, H. Akai, First-principles calculation of the Curie temperature Slater-Pauling curve. J. Phys.-Condens. Matter. 19, 365233 (2007)

    Article  CAS  Google Scholar 

  20. M.Q. Zuo, S.Y. Meng, Q. Li, H.X. Li, C.T. Chang, Y.F. Sun, Effect of metalloid elements on magnetic properties of Fe-based bulk metallic glasses. Intermetallics 83, 83–86 (2017)

    Article  CAS  Google Scholar 

  21. S.Y. Meng, H.B. Ling, Q. Li, J.J. Zhang, Development of Fe-based bulk metallic glasses with high saturation magnetization. Scripta Mater. 81, 24–27 (2014)

    Article  CAS  Google Scholar 

  22. Z.Q. Liu, M.J. Shi, T. Zhang, Composition dependences and optimization of the magnetic properties of Fe-based metallic glasses. Mater. Res. Express 1, 046110 (2014)

    Article  CAS  Google Scholar 

  23. R.C. O’Handley, D.S. Boudreaux, Magnetic properties of transition metal-metalloid glasses a charge transfer model. Phys. Status Solidi (a) 45, 607–615 (1978)

    Article  Google Scholar 

  24. H. Kronműller, M. Fähnle, M. Domann, H. Grimm, R. Grimm, B. Grőger, Magnetic properties of amorphous ferromagnetic alloys. J. Magn. Magn. Mater. 13, 53–70 (1979)

    Article  Google Scholar 

  25. H.Y. Xiao, A.D. Wang, J.W. Li, A.N. He, T. Liu, Y.Q. Dong, H. Guo, X.C. Liu, Structural evolutionary process and interrelation for FeSiBNbCuMo nanocrystalline alloy. J. Alloy Compd. 821, 153487 (2020)

    Article  CAS  Google Scholar 

  26. E.N. Zanaeva, A.I. Bazlov, D.A. Milkova, A.Y. Churyumov, A. Inoue, N.Y. Tabachkova, F. Wang, F.L. Kong, S.L. Zhu, High-frequency soft magnetic properties of Fe–Si–B–P–Mo–Cu amorphous and nanocrystalline alloys. J. Non-Cryst. Solids 526, 119702 (2019)

    Article  CAS  Google Scholar 

  27. Y. Han, F.L. Kong, F.F. Han, A. Inoue, S.L. Zhu, E. Shalaan, F. Al-Marzouki, New Fe-based soft magnetic amorphous alloys with high saturation magnetization and good corrosion resistance for dust core application. Intermetallics 76, 18–25 (2016)

    Article  CAS  Google Scholar 

  28. H. Matsumoto, A. Urata, Y. Yamada, A. Inoue, Novel FePBNbCr glassy alloys “SENNTIX” with good soft-magnetic properties for high efficiency commercial inductor cores. J. Alloy Compd. 509, S193–S196 (2011)

    Article  CAS  Google Scholar 

  29. J. Xu, Y.Z. Yang, W. Li, X.C. Chen, The effect of introduction of carbon on the glass forming ability and magnetic properties of melt-spun Fe–Si–B–Cu–C alloys. J. Non-Cryst. Solids 447, 167–170 (2016)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant number U1704159), the National Natural Science Foundation of China (Grant No.51771083), and the S&T Innovation 2025 Major Special Program (Grant Number 2018B10084).

Author information

Authors and Affiliations

Authors

Contributions

Xuhang Zhang, Yaqiang Dong and Fushan Li contributed the central idea, and wrote the first draft. Aina He and Jiawei Li contributed to improve the manuscript. Liang Chang contributed to provide the component ideas. Changjiu Wang, Qiang Chi and Xiaoxue Shui completed the remain refining experiment. All authors have contributed to the manuscript.

Corresponding authors

Correspondence to Yaqiang Dong, Aina He or Fushan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Dong, Y., Wang, C. et al. Influence of P content on SMPs in Fe–Si–B–P–C–Cu–Nb amorphous alloys under longitudinal field annealing. J Mater Sci: Mater Electron 32, 7198–7208 (2021). https://doi.org/10.1007/s10854-021-05428-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05428-1

Navigation