Skip to main content

Advertisement

Log in

Surface photovoltage response of zinc oxide microrods on prismatic planes: effect of UV, temperature and oxygen ambience

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this study, we report the time evaluation of work function measurements on ZnO microrods in Kelvin probe method under photoexcitation, called Surface Photovoltage (SPV). The SPV measurements are one of the most important techniques for characterizing both surface and bulk of the semiconductors. The ZnO microrods synthesized by hydrothermal method are highly crystalline with typical length of 50–100 µm and hexagonal cross section of about 2 µm. Upon drop-casting, most of the rods lie flat on the surface making the basal (002) plane vertical and the prismatic (101) and (100) plane on top. Thus, the SPV measurements are performed on these prismatic planes which are non-polar in nature. The SPV response of microrods has been studied for UV laser of photon energy 3.45 eV which is higher than that of the observed bandgap of 3.3 eV of ZnO microrods. The response is studied in varying oxygen ambience and temperatures. The average work function of the material at room temperature (25 °C) and ambient atmosphere is found to be 4.52 ± 0.3 eV. The work function was found to decrease with increasing temperature and upon photoexcitation. The photovoltage recovery time depicts that the presence of oxygen in atmosphere greatly accelerates the photocurrent recovery through trapping of photo-generated charge carriers by the surface states. The minority carrier diffusion length thus estimated from variable energy photoexcitation is found to be 160 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

source of 530 nm laser

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data of the study are available on reasonable request to the communicating author.

References

  1. A. Janotti, C.G. Van de Walle, Rep. Progress Phys. (2009). https://doi.org/10.1088/0034-4885/72/12/126501

    Article  Google Scholar 

  2. K. Bandopadhyay, J. Mitra, Sci. Rep. 6, 28468 (2016). https://doi.org/10.1038/srep28468

    Article  CAS  Google Scholar 

  3. A. Janotti, C.G. Van de Walle, Appl. Phys. Lett. (2005). https://doi.org/10.1063/1.2053360

    Article  Google Scholar 

  4. K. Bandopadhyay, J. Mitra, RSC Adv. 5, 23540 (2015). https://doi.org/10.1039/c5ra00355e

    Article  CAS  Google Scholar 

  5. L. Liu, Z. Mei, A. Tang et al., Phys. Rev. B (2016). https://doi.org/10.1103/PhysRevB.93.235305

    Article  Google Scholar 

  6. D.M. Hofmann, A. Hofstaetter, F. Leiter et al., Phys. Rev. Lett. 88, 045504 (2002). https://doi.org/10.1103/PhysRevLett.88.045504

    Article  CAS  Google Scholar 

  7. F.A. Selim, M.H. Weber, D. Solodovnikov, K.G. Lynn, Phys. Rev. Lett. 99, 085502 (2007). https://doi.org/10.1103/PhysRevLett.99.085502

    Article  CAS  Google Scholar 

  8. D.I. Son, B.W. Kwon, D.H. Park et al., Nat. Nanotechnol. 7, 465 (2012). https://doi.org/10.1038/nnano.2012.71

    Article  CAS  Google Scholar 

  9. A.Z.C. Soci, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, D. Wang, Nano Lett. 7, 7 (2007)

    Article  Google Scholar 

  10. M.K.Y. Takahashi, A. Kondoh, H. Minoura, Y. Ohya, Jpn. Appl. Phys. 33, 6 (1994)

    Article  Google Scholar 

  11. B.D. Boruah, Nanosc Adv. 1, 2059 (2019). https://doi.org/10.1039/c9na00130a

    Article  CAS  Google Scholar 

  12. L. Ren, T. Tian, Y. Li, J. Huang, X. Zhao, ACS Appl Mater Interfaces 5, 5861 (2013). https://doi.org/10.1021/am401533w

    Article  CAS  Google Scholar 

  13. Y.-S. Choi, J.-W. Kang, D.-K. Hwang, S.-J. Park, IEEE Trans. Electron Devices 57, 26 (2010). https://doi.org/10.1109/ted.2009.2033769

    Article  CAS  Google Scholar 

  14. V.S. Bhati, S. Ranwa, S. Rajamani et al., ACS Appl Mater Interfaces 10, 11116 (2018). https://doi.org/10.1021/acsami.7b17877

    Article  CAS  Google Scholar 

  15. C.Y.Q. Yu, W. Fu, M. Yuan, J. Guo, M. Li, S. Liu, G. Zou, H. Yang, J. Phys. Chem. C 113, 6 (2009)

    Article  Google Scholar 

  16. M.-C.P.C.S. Lao, Q. Kuang, Y. Deng, A.K. Sood, D.L. Polla, Z.L. Wang, J. Am. Chem. Soc. 129, 2 (2007)

    Article  Google Scholar 

  17. J. Dai, C. Xu, X. Xu et al., ACS Appl. Mater. Interfaces 5, 9344 (2013). https://doi.org/10.1021/am403609y

    Article  CAS  Google Scholar 

  18. S. Liu, M.Y. Li, D. Su et al., ACS Appl. Mater. Interfaces 10, 32516 (2018). https://doi.org/10.1021/acsami.8b09442

    Article  CAS  Google Scholar 

  19. C.L. Hsu, Y.H. Lin, L.K. Wang, T.J. Hsueh, S.P. Chang, S.J. Chang, ACS Appl. Mater. Interfaces 9, 14935 (2017). https://doi.org/10.1021/acsami.7b03216

    Article  CAS  Google Scholar 

  20. R. Vidya, P. Ravindran, H. Fjellvåg et al., Phys. Rev. B (2011). https://doi.org/10.1103/PhysRevB.83.045206

    Article  Google Scholar 

  21. S. Suresh, K.M.B. Urs, A.T. Vasudevan, S. Sriram, V.B. Kamble, Physica Status Solidi (RRL) (2019). https://doi.org/10.1002/pssr.201800683

    Article  Google Scholar 

  22. N. Srinatha, Y.S. No, V.B. Kamble et al., RSC Adv. 6, 9779 (2016). https://doi.org/10.1039/c5ra22795j

    Article  CAS  Google Scholar 

  23. M.E. Swanwick, S.M. Pfaendler, A.I. Akinwande, A.J. Flewitt, Nanotechnology 23, 344009 (2012). https://doi.org/10.1088/0957-4484/23/34/344009

    Article  CAS  Google Scholar 

  24. L. Kelvin, Lond. Edinb.Dublin Philos. Mag. J. Sci. 46, 82 (2009). https://doi.org/10.1080/14786449808621172

    Article  Google Scholar 

  25. L. Kronik, Y. Shapira, Surf. Interface Anal. 31, 954 (2001). https://doi.org/10.1002/sia.1132

    Article  CAS  Google Scholar 

  26. W.H.B.J. Bardeen, Bell Syst. Techn. J. 32, 42 (1952)

    Google Scholar 

  27. C.G.B. Garrett, W.H. Brattain, Phys. Rev. 99, 376 (1955). https://doi.org/10.1103/PhysRev.99.376

    Article  Google Scholar 

  28. E.O. Johnson, J. Appl. Phys. 28, 1349 (1957). https://doi.org/10.1063/1.1722650

    Article  Google Scholar 

  29. A.M. Goodman, J. Appl. Phys. 32, 2550 (1961). https://doi.org/10.1063/1.1728351

    Article  Google Scholar 

  30. H.C. Gatos, J. Lagowski, J. Vacuum Sci. Technol. 10, 130 (1973). https://doi.org/10.1116/1.1317922

    Article  CAS  Google Scholar 

  31. Y.S.L. Kronik, Surf. Sci. Rep. 37, 206 (1999)

    Article  Google Scholar 

  32. H.L.A.G. Heiland, Nuovo Ciment 39, 11 (1977)

    Google Scholar 

  33. I.D. Baikie, K.O. van der Werf, H. Oerbekke, J. Broeze, A. van Silfhout, Rev. Sci. Instrum. 60, 930 (1989). https://doi.org/10.1063/1.1140346

    Article  Google Scholar 

  34. O. Vilitis, M. Rutkis, J. Busenberg, D. Merkulov, Latv. J. Phys. Tech. Sci. 53, 48 (2016). https://doi.org/10.1515/lpts-2016-0013

    Article  Google Scholar 

  35. NASARJD Arcy (1970) J. Phys. E 3: 4

  36. O. Vilitis, M. Rutkis, J. Busenbergs, D. Merkulovs, Latv. J. Phys. Tech. Sci. 53, 57 (2016). https://doi.org/10.1515/lpts-2016-0045

    Article  Google Scholar 

  37. Y. Ohno, Y. Tokumoto, I. Yonenaga, K. Fujii, T. Yao, J. Appl. Phys. 111, 78 (2012). https://doi.org/10.1063/1.4725426

    Article  CAS  Google Scholar 

  38. T. Lim, G. Ico, K. Jung, K.N. Bozhilov, J. Nam, A.A. Martinez-Morales, CrystEngComm 20, 5688 (2018). https://doi.org/10.1039/c8ce00799c

    Article  CAS  Google Scholar 

  39. D. Cavalcoli, A. Cavallini, Phys. Status Solidi C 7, 1293 (2010). https://doi.org/10.1002/pssc.200983124

    Article  CAS  Google Scholar 

  40. D.K. Schroder, Measur. Sci. Technol. 12, 16 (2001)

    Article  Google Scholar 

  41. ZHMN Akter, Hasan Zahid, MA Tonima (2015) International conference on materials, electronics & information engineering, ICMEIE-2015

  42. A. Soni, K. Mulchandani, K.R. Mavani, J. Mater. Chem. C 8, 7837 (2020). https://doi.org/10.1039/d0tc00990c

    Article  CAS  Google Scholar 

  43. Z. Ke, Z. Yang, M. Wang, M. Cao, Z. Sun, J. Shao, Sens. Actuators, A 253, 173 (2017). https://doi.org/10.1016/j.sna.2016.07.026

    Article  CAS  Google Scholar 

  44. S.P. Ghosh, K.C. Das, N. Tripathy et al., IOP Conf. Ser. (2016). https://doi.org/10.1088/1757-899x/115/1/012035

    Article  Google Scholar 

  45. M.H. Mamat, Z. Khusaimi, M.M. Zahidi et al., Jpn. J. Appl. Phys. 50, 10 (2011). https://doi.org/10.1143/jjap.50.06gh04

    Article  Google Scholar 

  46. V.B. Kamble, S.V. Bhat, A.M. Umarji, J. Appl. Phys. 113, 120 (2013). https://doi.org/10.1063/1.4812382

    Article  CAS  Google Scholar 

  47. D.T. Xie, L. Zhu, T. Li, Xu. Yn, Mater. Chem. Phys. 70, 4 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

VBK would like to thank the Department of Science and Technology, Government of India, Nano technology mission for the grant DST/NM/NT/2018/124, which supported this research work. The authors also like to thank Dr Joy Mitra for the fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinayak Kamble.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urs, K.M.B., Kamble, V. Surface photovoltage response of zinc oxide microrods on prismatic planes: effect of UV, temperature and oxygen ambience. J Mater Sci: Mater Electron 32, 6414–6424 (2021). https://doi.org/10.1007/s10854-021-05359-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05359-x

Navigation