Skip to main content
Log in

Profound analysis on sensing performance of Nanogap SiGe source DM-TFET biosensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This present work is an extensive effort to report the key role of indispensable technical challenges in the sensing performance of an embedded nanogap SiGe source dielectric-modulated tunnel field effect transistor (SGS-DM-TFET) biosensor during the conjugation of biological samples for the first time. In order to reach high and brilliant insights into the different design considerations impacting on the sensing performance of the biosensor under the study, two key issues in terms of process-related issue and real-time-related issues covering biomolecules manners in the nanogap cavity of the biosensor have been comprehensively studied through extensive numerical simulation. Investigations in this work revealed that the SGS-DM-TFET biosensor must be truly configured for working in realistic conditions. The obtained results give us a useful guideline for sensing the biomolecules samples in the real conditions including low coverage percentage of biological samples, charge effect, and discrete probe position with the help of SGS-DM-TFET biosensor while keeping the high sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. S. Baoqing et al., A novel structure of silicon-on-insulator microring biosensor based on Young’s two-slit interference and its simulation. J. Semicond. 32(7), 074010 (2011)

    Article  Google Scholar 

  2. P.R. Nair, M.A. Alam, Design considerations of silicon nanowire biosensors. IEEE Trans. Electron Devices 54(12), 3400–3408 (2007)

    Article  CAS  Google Scholar 

  3. H. Im et al., A dielectric-modulated field-effect transistor for biosensing. Nat. Nanotechnol. 2(7), 430–434 (2007)

    Article  CAS  Google Scholar 

  4. M.S. Parihar, A. Kranti, Enhanced sensitivity of double gate junctionless transistor architecture for biosensing applications. Nanotechnology 26(14), 145201 (2015)

    Article  Google Scholar 

  5. J. Luo et al., The influence of MBE and device structure on the electrical properties of GaAs HEMT biosensors. J. Semicond. 39(12), 124007 (2018)

    Article  CAS  Google Scholar 

  6. Y. Chen et al., An analytical drain current model for short-channel fully-depleted ultrathin silicon-on-insulator NMOS devices. Solid-State Electron. 38(12), 2051–2057 (1995)

    Article  CAS  Google Scholar 

  7. M. Saremi et al., A partial-SOI LDMOSFET with triangular buried-oxide for breakdown voltage improvement. Microelectron. Reliab. 51(12), 2069–2076 (2011)

    Article  CAS  Google Scholar 

  8. S.J. Mahabadi, S. Rajabi, J. Loiacono, A novel partial SOI LDMOSFET with periodic buried oxide for breakdown voltage and self heating effect enhancement. Superlattices Microstruct. 85, 872–879 (2015)

    Article  Google Scholar 

  9. M. Zareiee, A.A. Orouji, Superior electrical characteristics of novel nanoscale MOSFET with embedded tunnel diode. Superlattices Microstruct. 101, 57–67 (2017)

    Article  CAS  Google Scholar 

  10. A. Naderi, F. Heirani, Improvement in the performance of SOI-MESFETs by T-shaped oxide part at channel region: DC and RF characteristics. Superlattices Microstruct. 111, 1022–1033 (2017)

    Article  CAS  Google Scholar 

  11. R. Narang et al., A dielectric-modulated tunnel-FET-based biosensor for label-free detection: analytical modeling study and sensitivity analysis. IEEE Trans. Electron Devices 59(10), 2809–2817 (2012)

    Article  Google Scholar 

  12. R. Narang et al., Dielectric modulated tunnel field-effect transistor—a biomolecule sensor. IEEE Electron Device Lett. 33(2), 266–268 (2011)

    Article  Google Scholar 

  13. M.K. Anvarifard, A.A. Orouji, Evidence for enhanced reliability in a novel nanoscale partially-depleted SOI MOSFET. IEEE Trans. Device Mater. Reliab. 15(4), 536–542 (2014)

    Article  Google Scholar 

  14. R.M.I. Abadi, M. Saremi, A resonant tunneling nanowire field effect transistor with physical contractions: a negative differential resistance device for low power very large scale integration applications. J. Electron. Mater. 47(2), 1091–1098 (2018)

    Article  Google Scholar 

  15. R. Narang, M. Saxena, M. Gupta, Comparative analysis of dielectric-modulated FET and TFET-based biosensor. IEEE Trans. Nanotechnol. 14(3), 427–435 (2015)

    Article  CAS  Google Scholar 

  16. V. Nagavarapu, R. Jhaveri, J.C. Woo, The tunnel source (PNPN) n-MOSFET: A novel high performance transistor. IEEE Trans. Electron Devices 55(4), 1013–1019 (2008)

    Article  CAS  Google Scholar 

  17. S. Kanungo et al., Study and analysis of the effects of SiGe source and pocket-doped channel on sensing performance of dielectrically modulated tunnel FET-based biosensors. IEEE Trans. Electron Devices 63(6), 2589–2596 (2016)

    Article  CAS  Google Scholar 

  18. K. Tamersit, F. Djeffal, Carbon nanotube field-effect transistor with vacuum gate dielectric for label-free detection of DNA molecules: a computational investigation. IEEE Sens. J. 19(20), 9263–9270 (2019)

    Article  CAS  Google Scholar 

  19. K. Tamersit, F. Djeffal, Double-gate graphene nanoribbon field-effect transistor for DNA and gas sensing applications: simulation study and sensitivity analysis. IEEE Sens. J. 16(11), 4180–4191 (2016)

    Article  Google Scholar 

  20. M.K. Anvarifard, Z. Ramezani, I.S. Amiri, Proposal of an embedded nanogap biosensor by a graphene nanoribbon field-effect transistor for biological samples detection. Phys Status Solidi (A) 217(2), 1900879 (2020)

    Article  CAS  Google Scholar 

  21. M.K. Anvarifard, Z. Ramezani, I.S. Amiri, Label-free detection of DNA by a dielectric modulated armchair-graphene nanoribbon FET based biosensor in a dual-nanogap setup. Mater. Sci. Eng., C 117, 111293 (2020)

    Article  CAS  Google Scholar 

  22. A.W. Peterson, R.J. Heaton, R.M. Georgiadis, The effect of surface probe density on DNA hybridization. Nucleic Acids Res. 29(24), 5163–5168 (2001)

    Article  CAS  Google Scholar 

  23. S.I., ATLAS User’s Manual: 2-D Device Simulator (S.I., Santa Clara, 2012)

    Google Scholar 

  24. K. Tamersit, Computational study of pn carbon nanotube tunnel field-effect transistor. IEEE Trans. Electron Devices 67(2), 704–710 (2020)

    Article  CAS  Google Scholar 

  25. K. Tamersit, M. Kotti, M. Fakhfakh, A new pressure microsensor based on dual-gate graphene field-effect transistor with a vertically movable top-gate: proposal, analysis, and optimization. AEU-Int. J. Electron. Commun. 124, 153346 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Amiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anvarifard, M.K., Ramezani, Z., Amiri, I.S. et al. Profound analysis on sensing performance of Nanogap SiGe source DM-TFET biosensor. J Mater Sci: Mater Electron 31, 22699–22712 (2020). https://doi.org/10.1007/s10854-020-04795-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04795-5

Navigation