Skip to main content
Log in

Antibacterial activity, optical, mechanical, thermal, and dielectric properties of L-phenylalanine fumaric acid single crystals for biomedical, optoelectronic, and photonic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A single crystal of L-Phenylalanine Fumaric Acid (LPFA) with molecular formula C9H11NO2.C4H4O4 was successfully synthesized by slow evaporation solution growth technique. The grown crystal underwent several characterizations. The single crystal X-ray diffraction analysis reveals that the synthesized sample crystallizes in the triclinic system with the space group PI. Using the UV-Vis spectral analysis, it was found that the grown crystal holds good optical quality which indicates that the crystal is transparent in the visible region with lower cut-off wavelength of 223 nm and optical band gap is found to be 5.57 eV. Using the UV-Vis spectrum, the remarkable properties such as extinction coefficient, reflectance, refractive index, electrical conductivity, optical conductivity, and electric susceptibility have been calculated. From Vickers Micro hardness, the mechanical stability of the LPFA crystal and work hardening coefficient is found to be 3.8. By thermogravimetric and differential thermal analysis, it has been analyzed that the grown crystal is having thermal stability up to 206 °C. The electrical properties have been analyzed using the dielectric studies. It has been found that the sample exhibits lower dielectric constant and dielectric loss at high frequencies which indicates good optical quality of the crystal. The antibacterial activity was investigated using four strains such as Escherichia coli, Serratia marcescens, Pseudomonas aeruginosa, and Staphylococcus aureus using Agar disk diffusion test and it has been evaluated that the sample is having strongest activity of 43 mm against Pseudomonas aeruginosa. Hence, the as grown sample is having wide applications in the field of electro-optics, water purification and bio-medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Zhao, C. Chen, Z. Zhou, Y. Cao, M. Li, A comparative study on the nonlinear optical properties of diphenyl ether and dipheny sulfide compounds. J. Mater. Chem. 10, 1581–1584 (2000). https://doi.org/10.1039/B000957L

    Article  CAS  Google Scholar 

  2. B. Uma Rajnikant, K. Sakthi Murugesan, S. Krishan, B. Milton Boaz, Growth, structural, optical, thermal and dielectric properties of a novel semi-organic nonlinear optical crystal: dichloro-diglycine zinc II. J. Prog. Nat. Sci-Mater. 24, 378–387 (2014). https://doi.org/10.1016/j.pnsc.2014.07.001

    Article  CAS  Google Scholar 

  3. M. Narayan Bhat, S.M. Dharmaprakash, Growth of nonlinear optical γ-glycine crystals. J. Cryst. Growth. 236, 376–380 (2002). https://doi.org/10.1016/S0022-0248(01)02094-2

    Article  Google Scholar 

  4. M. Lydia Caroline, S. Vasudevan, Growth and characterization of an organic nonlinear optical material: L-alanine alaninium nitrate. J. Matt. Lett. 62, 2245–2248 (2008). https://doi.org/10.1016/j.matlet.2007.11.059

    Article  CAS  Google Scholar 

  5. G. Ramesh Kumar, S. Gokul Raj, R. Mohan, R. Jayavel, Growth and characterization of new nonlinear optical L-threonium acetate single crystals. J. Cryst. Growth. 283, 193–197 (2005). https://doi.org/10.1016/j.jcrysgro.2005.04.103

    Article  CAS  Google Scholar 

  6. J.F. Nicoud, R.J. Twieg, D.S. Chemla, J.E. Zyss (Eds.), In Nonlinear Optical properties of organic molecules and crystals, (Academic press, London), 1987, p. 227.

  7. M. Delfino, A comprehensive optical second harmonic generation study of noncentrosymmetric character of biological structures. J. Mol. Cryst. Liq. Cryst. 52, 271–284 (1979). https://doi.org/10.1007/BF02328933

    Article  Google Scholar 

  8. C. Ramachandra Raja, G. Gokila, A. Antony Joseph, Growth and spectroscopic characterization of a new organic nonlinear optical crystal: L-Alaninium succinate. J. Spectrochim. Acta A. 72, 753–756 (2009). https://doi.org/10.1016/j.ssa.2008.11.030

    Article  Google Scholar 

  9. N. Suneetha, D. Rajan Babu, Spectral, nonlinear, optical and optical limiting properties of l-phenylalanine l-phenylalaninium formate single crystal. J. Spectrochim Acta A. (2018). https://doi.org/10.1016/j.ssa.2018.05.095

    Article  Google Scholar 

  10. R. Mahalakshmi, S. Jesuraja, S. Jerome Das, Growth and characterization of L-phenylalanine. Cryst. Res. Technol. 41, 780–783 (2006). https://doi.org/10.1002/crat.200510668

    Article  CAS  Google Scholar 

  11. U. Mrowietz, P.J. Morrison, I. Suhrkamp, M. Kumanova, B. Clement, The Pharmacokinetics of fumaric acid esters reveal their in vivo effects. J. Trends Pharmacol. Sci. 39, 1–12 (2018). https://doi.org/10.1016/j.tips.2017.11.002

    Article  CAS  Google Scholar 

  12. L.H. Abdel Rahman, R.M. El Khatib, L.A.F. Nassr, A.M. Abu Dief, M. Ismael, A.A. Seleem, Metal based pharmacologically active agents: Synthesis, structural characterization, molecular modeling, CT-DNA binding studies and in vitro antimicrobial screening of iron (II) bromosalicylidene amino acid chelates. Spectrachim. Acta A. 117, 366–378 (2014). https://doi.org/10.1016/j.saa.2013.07.056

    Article  CAS  Google Scholar 

  13. L.H. Abdel Rahman, R.M. El Khatib, L.A.F. Nassr, A.M. Abu Dief, F. El Din Lashin, Design, characterization, teratogenicity testing, antibacterial, antifungal and DNA interaction of few high spin Fe(II) Schiff base amino acid complexes. Spectrachim. Acta A. 111, 266–276 (2013). https://doi.org/10.1016/j.saa.2013.03.061

    Article  CAS  Google Scholar 

  14. D. Ausbacher, G. Svineng, T. Hansen, M.B. Strom, Anticancer mechanisms of action of two small amphipathic β2,2-amino acid derivatives derived from antimicrobial peptides. Biophys. Acta. 1818, 2917–2925 (2012). https://doi.org/10.1016/j.bbamem.2012.07.005

    Article  CAS  Google Scholar 

  15. M. Alagar, R.V. Krishna kumar, K. Rajagopal, M. Subha Nandhini, S. Natarajan, L-Phenylalanine fumaric acid. J. Acta Crystallogr. E 59, 0952–0954 (2003). https://doi.org/10.1107/S1600536803011942

    Article  CAS  Google Scholar 

  16. M. Prakash, D. Geetha, M. Lydia Caroline, Growth and characterization of nonlinear optics (NLO) active L-phenylalanine fumaric acid (LPFA) single crystal. J. Mater. Manuf. Process. 27, 519–522 (2012). https://doi.org/10.1080/10426914.2011.593228

    Article  CAS  Google Scholar 

  17. V. Revathi Ambika, D. Shalini, R. Usha, N. Hema, S. Athimoolam, D. Jayalakshmi. Synthesis, growth, optical, spectral, thermal and dielectric studies of a new nonlinear optical material: l-proline 2,4-dichlorobenzoic acid single crystal, J. Mater. Sci: Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-7273-z.

  18. T. Balakrishnan, G. Bhagavannararayana, K. Ramamurti, Growth, structural, optical, thermal and mechanical properties of ammonium pentaborate single crystal. Spectrochim. Acta A 71, 578–583 (2008). https://doi.org/10.1016/j.saa.2008.01.026

    Article  CAS  Google Scholar 

  19. K. Mangaiyarkarasi, A.T. Ravichandran, K. Anitha, A. Manivel, Synthesis, growth and characterization of L-Phenylalaninium ethanesulfonate nonlinear optical single crystal. J. Mol. Struct. 1155, 758–764 (2018). https://doi.org/10.1016/j.molstruc.2017.11.065

    Article  CAS  Google Scholar 

  20. J. Jagger, Conduct of experiments. In: Introduction to research in ultraviolet photobiology, Printice Hall, Inc. Englewood. Cliffs, N. J., pp. 50-67. (1967).

  21. P. Sangeetha, P. Jayaprakash, M. Nageshwari, C.S. Rathika Thaya Kumari Sutha, M. Prakash, G. Vinitha, M. Lydia Caroline, Growth and characterization of an efficient new NLO single crystal L-phenylalanine D-methionine for frequency conversion and optoelectronic applications. J. Phys. B 525, 164–174 (2017). https://doi.org/10.1016/j.physb.2017.08.037

    Article  CAS  Google Scholar 

  22. K. Kumar, K. Ramamoorthy, P.M. Koinkar, R. Chandramohan, K. Sankaranarayanan, A novel in situ synthesis and growth of ZnAl2O4 thin films. J. Cryst. Growth 289, 405–407 (2006). https://doi.org/10.1016/j.jcrysgro.2005.11.007

    Article  CAS  Google Scholar 

  23. P. Jayaprakash, M. Peer Mohamed, P. Krishnan, M. Nageshwari, G. Mani, M. Lydia Caroline, Growth, spectral, thermal, laser damage threshold, microhardness, dielectric, linear and nonlinear optical properties of an organic single crystal: L-phenylalanine DL-mandelic acid. J. Phys. B 503, 25–31 (2016). https://doi.org/10.1016/j.physb.2016.09.010

    Article  CAS  Google Scholar 

  24. K. Li, X. Wang, D. Xue, A simple method of Hardness prediction of transition metal compounds. J. Mater. Focus. 1, 142–148 (2012). https://doi.org/10.1166/mat.2012.1012

    Article  CAS  Google Scholar 

  25. K. Li, P. Yang, L. Niu, D. Xue, Group electronegativity for prediction of materials hardness. J. Phys. Chem. A 116, 6911–6916 (2012). https://doi.org/10.1021/jp3032258

    Article  CAS  Google Scholar 

  26. K. Li, X. Wang, F. Zhang, D. Xue, Electronegativity identification of novel super hard materials. J. Phys. Rev. Lett. 100, 235504 (2008). https://doi.org/10.1103/PhysRevLett.100.235504

    Article  CAS  Google Scholar 

  27. M. Anis, G.G. Muley, M.I. Baig, G. Rabbani, H.A. Ghramh, S.P. Ramteke, Doping effect of Ni2+ on structural, UV-visible, SHG efficiency, dielectric and microhardness traits of KH2PO4 (KDP) crystal. J. Optik. (2018). https://doi.org/10.1016/j.ijleo.2018.10.061

    Article  Google Scholar 

  28. E.M. Onitsch, Systematic metallographic and mineralogic structures. Mikroskopia. 2, 131–138 (1947)

    Google Scholar 

  29. R. Ragavan, S. Srinivasan, S. Venkatakrishnan, K. Paneerselvam, Growth, structural, spectral, thermal, electrical and optical characterization of a novel optical material: Triethanolamine picrate single crystals for optical applications. Chin. J. Phys. (2019). https://doi.org/10.1016/j.cjph.2019.11.017

    Article  Google Scholar 

  30. K. Deepa, J. Madhavan, Synthesis, vibrational spectroscopy, thermal analysis, non-linear optical properties and DFT calculation of a novel l-phenylalanine maleic acid single crystals. MMSE J (2017). https://doi.org/10.2412/mmse.78.8.744

    Article  Google Scholar 

  31. M. Prakash, M. Lydia Caroline, D. Geetha, Growth, structural, spectral, optical, and thermal studies on amino acid based new NLO single crystal: L-phenylalanine-4-nitrophenol. J. Spectrochim Acta A Mol Biomol Spectrosc 108, 32–37 (2013). https://doi.org/10.1016/j.ssa.2013.01.078

    Article  CAS  Google Scholar 

  32. V. Siva Shankar, R. Siddhswaran, R. Sankar, R. Jayavel, P. Murugakoothan, Growth and characterization of new semiorganic nonlinear optical single crystal L-phenylalanine L-phenylalaninium perchlorate (LPPAPC). J. Mater. Lett. 63, 363–365 (2009). https://doi.org/10.1016/j.matlet.200810.049

    Article  Google Scholar 

  33. J.H. Joshi, G.M. Joshi, M.J. Joshi, H.O. Jevitha, K.D. Parikh, Raman, photoluminescence and ac electrical studies of pure and l-serine doped ammonium dihydrogen phosphate single crystals: an understanding of defect chemistry in hydrogen. New J. Chem. 42, 17227–17249 (2018). https://doi.org/10.1039/C8NJ03393E

    Article  CAS  Google Scholar 

  34. K. Kanagathara, G. Anbalagan, Growth, optical and dielectric studies on pure and L-Lysine doped KDP crystals. Int. J. Opt. 2012, 1–6 (2012). https://doi.org/10.1155/2012/826763

    Article  CAS  Google Scholar 

  35. P. Jayaprakash, P. Sangeetha, C. Rathika Thaya Kumari, M. Lydia, Caroline, investigation on the growth, spectral, lifetime, mechanical analysis and third order nonlinear optical studies of L-methionine admixture D-mandelic acid single crystal: a promising material for nonlinear optical applications. J. Physica B 518, 1–12 (2017). https://doi.org/10.1016/j.physb.2017.05.017

    Article  CAS  Google Scholar 

  36. P.V. Dhanaraj, N.P. Rajesh, Studies on the growth and characterization of tris (glycine) calcium (II) dichloride- a nonlinear optical crystal. J. Physica B 406, 12–18 (2011). https://doi.org/10.1016/j.physb.2010.09.041

    Article  CAS  Google Scholar 

  37. J.H. Joshi, D.K. Kanchan, H.O. Jethva, M.J. Joshi, K.D. Parikh, Dielectric relaxation, protonic defect, conductivity mechanisms, complex impedance and modulus spectroscopic studies of pure and l-threonine-doped ammonium dihydrogen phosphate. Ionics 24(7), 1995–2016 (2018). https://doi.org/10.1007/s11581-018-2461-2

    Article  CAS  Google Scholar 

  38. N.R. Rajagopalan, P. Krishnamoorthy, K. Jayamoorthy, A strategic approach to physico-chemical analysis of bis (thiourea) lead chloride–A reliable semi-organic nonlinear optical crystal. J. Opt. Laser Technol. 89, 6–15 (2017). https://doi.org/10.1016/j.optlastec.2016.10.001

    Article  CAS  Google Scholar 

  39. M. Peer Mohamed, P. Jayaprakash, M. Nageswari, C. Rathika Thaya Kumari, P. Sangeethha, S. Sudha, G. Mani, M. Lydia Caroline, Crystal growth, structural, spectral, thermal, linear and nonlinear optical characterization of a new organic nonlinear chiral compound: L-tryptophan-fumaric acid-water (1/1/1) suitable for laser frequency conversion. J. Mol. Struct. 1141, 551–562 (2017). https://doi.org/10.1016/j.molstruc.2017.04.002

    Article  CAS  Google Scholar 

  40. R.M. Al-Haddad, I.M. Ali, I.M. Ibrahim, I.M. Al-Essa, J. AI-Nahrain Univ. 12, 72–77 (2009)

    Article  Google Scholar 

  41. E. Veena Gopalan, K.A. Malini, S. Sagar, D. Sakthi Kumar, Y. Yoshida, I.A. Al-Omari, M.R. Anantharaman. , Mechanism of ac conduction in nanostructured manganese zinc mixed ferrites. J. Phys. D: Appl. Phys. 42, 165005 (2009). https://doi.org/10.1088/0022-3727/42/16/165005

    Article  CAS  Google Scholar 

  42. P. Jayaprakash, M. Peer Mohamed, M. Lydia Caroline, Growth, spectral and optical characterization of a novel nonlinear optical organic material: D-Alanine DL-Mandelic acid single crystal. J. Mol. Struct. 1134, 67–77 (2016). https://doi.org/10.1016/j.molstruc.2016.12.026

    Article  CAS  Google Scholar 

  43. R. Vardanyan, V. Hruby, Synthesis of essential drugs. Elsevier Sci. (2006). https://doi.org/10.1016/B978-0-444-52166-8.X5000-6

    Article  Google Scholar 

  44. Md Mahmudul Islama, Yaoju Tanc, H.M. Adnan Hameeda, Yang Liua , Chiranjibi Chhotaraya, Xiaoyin Caia, Zhiyong Liua, Zhili Lua, Shuai Wang, Xingshan Caic, Biyi Suc, Xinjie Lic, Shouyong Tanc, Jianxiong Liuc, Tianyu Zhanga, Prevalence and molecular characterization of amikacin resistance among Mycobacterium tuberculosis clinical isolates from southern China, J. Glob Antimicrob. Re 22, 290–295 (2020). https://doi.org/10.1016/j.jgar.2020.02.019.

  45. Q.K. Zhang, C.P. Yue, Y. Zhang, Z.Y. Liu, Six metal-organic frameworks assembled from asymmetric triazole carboxylate ligands: synthesis, crystal structures, photoluminescence properties and antibacterial activities. Inorg. Chim. Acta. 473, 112–120 (2018). https://doi.org/10.1016/j.ica.2017.12.036

    Article  CAS  Google Scholar 

  46. B. Gautam, R. Dani, R. Prasad, M. Srivastava, R. Yadav, M. Gondwal. Synthesis, characterization, single crystal structural studies, antibacterial activity and DFT investigations of 2-chloro-5-ethoxy-3, 6-bis (methylamino)-1,4-benzoquinone. Pharm Cta. 6, 1-10 (2015). https://doi.org/10.4172/21532435.10000418.

Download references

Acknowledgements

The authors are thankful to SAIF, Cochin for providing excellent research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Joema.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darling, D.A., Joema, S.E. Antibacterial activity, optical, mechanical, thermal, and dielectric properties of L-phenylalanine fumaric acid single crystals for biomedical, optoelectronic, and photonic applications. J Mater Sci: Mater Electron 31, 22427–22441 (2020). https://doi.org/10.1007/s10854-020-04744-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04744-2

Navigation