Skip to main content
Log in

Dielectric relaxations and optical properties of Mn-doped ZnO nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanoparticles (NPs) of pure zinc oxide (ZnO) and Zn1-xMnxO, where x = 0.01 and 0.05, were prepared using the co-precipitation method. The X-ray diffraction patterns revealed that both pure ZnO and Mn-doped ZnO NPs crystallize in hexagonal wurtzite. Different structure parameters are given. Other characterizations, such as scanning electron microscopy, energy-dispersive X-ray spectroscopy, and FTIR, were used to test the studied samples. The dielectric and optical properties were performed and discussed in detail. It was found that the dielectric permittivity and the ac conductivity of pure ZnO NPs increased significantly when the Mn ions substituted the Zn ones. A small polaron hopping conduction mechanism is suggested for the investigated samples. Different optical parameters were calculated in this work. The outcome results are discussed and compared to similar materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K.J. Chen, T.H. Fang, F.Y. Hung, L.W. Ji, S.J. Chang, S.J. Young, Y.J. Hsiao, Appl. Surf. Sci. 254, 5791 (2008)

    CAS  Google Scholar 

  2. S. Sharma, A. Tran, O. Nalamasu, P.S. Duta, J. Electron. Mater. 6, 1237 (2006)

    Google Scholar 

  3. A. Franco, H.V.S. Pessoni, Phys. B 476, 12 (2015)

    CAS  Google Scholar 

  4. G. Nam, H. Yoon, B. Kim, D.-Y. Lee, J.S. Kim, J.-Y. Leem, J. Nanosci. Nanotechnol. 14(11), 8544 (2014)

    CAS  Google Scholar 

  5. X. Han, S. Wahl, P.A. Russo, N. Pinna, Nanomaterials 8, 249 (2018)

    CAS  Google Scholar 

  6. T.M. Hammad, S. Griesing, M. Wotocek, S. Kuhn, R. Hempelmann, U. Hartmann, J.K. Salem, Int. J. Nanoparticles 6(4), 324 (2013)

    CAS  Google Scholar 

  7. K.P. Raj, K. Sadaiyandi, A. Kennedy, S. Sagadevan, Z.Z. Chowdhury, M.R.B. Johan, F. Abdul-Aziz, R.F. Rafique, R.T. Selvi, R.R. Bala, Nanoscale Res. Lett. 13, 229 (2018)

    Google Scholar 

  8. R.K. Sharma, S. Patel, K.C. Pargaien, Adv. Nat. Sci. Nanosci. Nanotechnol. 3, 035005 (2012)

    Google Scholar 

  9. S.A. Sundar, N.J. John, Int. J. Eng. Appl. Sci. (IJEAS) 3(3), 26 (2016)

    Google Scholar 

  10. J. Han, M. Shen, W. Cao, A.M.R. Senos, P.Q. Mantas, Appl. Phys. Lett. 82, 67 (2003)

    CAS  Google Scholar 

  11. S.V. Vegesna, V.J. Bhat, D. Bürger, J. Dellith, I. Skorupa, O.G. Schmidt, H. Schmidt, Sci. Rep. 10, 6698 (2020)

    CAS  Google Scholar 

  12. X. Yan, D. Hu, H. Li, L. Li, X. Chong, Y. Wang, Phys. B 406, 3956 (2011)

    CAS  Google Scholar 

  13. S.M. Shah, H. Naz, R.N. Ali, F. Alam, A. Ali, M. Farooq, A. Shah, A. Badshah, M. Siddiq, A. Waseem, Arab. J. Chem. 10, 1118 (2017)

    CAS  Google Scholar 

  14. M.A. Dar, D. Varshney, Superlattices Microstruct. 114, 340 (2018)

    CAS  Google Scholar 

  15. R. Viswanatha, S. Sapra, S.S. Gupta, B. Satpati, P.V. Satyam, B.N. Dev, D.D. Sarma, J. Phys. Chem. B 108, 6303 (2004)

    CAS  Google Scholar 

  16. V. Mote, J. Dargad, B. Dole, Nanosci. Nanoeng. 1(2), 116 (2013)

    Google Scholar 

  17. Y.S. Wang, P.J. Thomas, P. O’Brien, J. Phys. Chem. B 110(43), 21413 (2006)

    Google Scholar 

  18. J. Han, P.Q. Mantas, A.M.R. Senos, J. Eur. Ceram. Soc. 21, 1883 (2001)

    CAS  Google Scholar 

  19. W.-D. Zhou, D. Dastan, J. Li, X.-T. Yin, Q. Wang, Nanomaterials 10, 785 (2020)

    CAS  Google Scholar 

  20. M. Shatnawi, A.M. Alsmadi, I. Bsoul, B. Salameh, M. Mathai, G. Alnawashi, G.M. Alzoubi, F. Al-Dweri, M.S. Bawa’aneh, Results Phys. 6, 1064 (2016)

    Google Scholar 

  21. K. Rekha, M. Nirmala, M.G. Nair, A. Anukaliani, Phys. B 405, 3180 (2010)

    CAS  Google Scholar 

  22. T.A. Abdel-Baset, Y.-W. Fang, B. Anis, C.-G. Duan, M. Abdel-Hafiez, Mater. Sci. Semicond. Process. 17, 162 (2014)

    Google Scholar 

  23. G. Srinivasan, R.T. Rajendra Kumar, J. Kumar, J. Sol Gel Sci. Technol. 43, 171 (2007)

    CAS  Google Scholar 

  24. A.A. Othman, M.A. Osman, E.M.M. Ibrahim, M.A. Ali, A.G. Abd-Elrahim, Mater. Sci. Eng. B 219, 1 (2017)

    CAS  Google Scholar 

  25. S.N. Danilchenko, O.G. Kukharenko, C. Moseke, I.Y. Protsenko, L.F. Sukhodub, B. Sulkio-Cleff, Cryst. Res. Technol. 37(11), 1234 (2002)

    CAS  Google Scholar 

  26. A. Jafari, K. Tahani, D. Dastan, S. Asgary, Z. Shi, X.-T. Yin, W.-D. Zhou, H. Garmestani, Ş Ţălu, Surf. Interfaces 18, 100463 (2020)

    CAS  Google Scholar 

  27. M. Kahouli, A. Barhoumi, A. Bouzid, A. Al-Hajry, S. Guermazi, Superlattices Microstruct. 85, 7 (2015)

    CAS  Google Scholar 

  28. T.M. Hammad, S. Griesing, M. Wotocek, S. Kuhn, R. Hempelmann, U. Hartmann, J.K. Salem, Appl. Nanosci. 3, 153 (2013)

    CAS  Google Scholar 

  29. M.A.R. Bonifácioa, H.L. Liraa, L.S. Neivab, R.H.G.A. Kiminamic, L. Gama, Mater. Res. 20(4), 1044 (2017)

    Google Scholar 

  30. Y.-M. Hao, S.-Y. Lou, S.-M. Zhou, R.-J. Yuan, G.-Y. Zhu, N. Li, Nanoscale Res. Lett. 7, 100 (2012)

    Google Scholar 

  31. B. Manikandan, T. Endo, S. Kaneko, K.R. Murali, R. John, J. Mater. Sci. Mater. Electron. 29, 9474 (2018)

    CAS  Google Scholar 

  32. M.F. Khan, A.H. Ansari, M. Hameedullah, E. Ahmad, F.M. Husain, Q. Zia, U. Baig, M.R. Zaheer, M.M. Alam, A.M. Khan, Z.A. AlOthman, I. Ahmad, G.M. Ashraf, G. Aliev, Sci. Rep. 6, 27689 (2016)

    CAS  Google Scholar 

  33. P. Norouzzadeh, K. Mabhouti, M.M. Golzan, R. Naderali, J. Mater. Sci. Mater. Electron. 31, 7335 (2020)

    CAS  Google Scholar 

  34. D. Dastan, N. Chaure, M. Kartha, J. Mater. Sci. Mater. Electron. 28, 7784 (2017)

    CAS  Google Scholar 

  35. G. Srinet, R. Kumar, V. Sajal, J. Appl. Phys. 114, 33912 (2013)

    Google Scholar 

  36. P.P. Sharmila, J.T. Nisha, AIP Conf. Proc. 1620, 462 (2014)

    Google Scholar 

  37. P.S. Vindhya, T. Jeyasingh, V.T. Kavitha, AIP Conf. Proc. 2082, 080005 (2019)

    Google Scholar 

  38. A.M. Saleh, R.D. Gould, A.K. Hassan, Phys. Status Solidi (a) 139(21), 379 (1993)

    CAS  Google Scholar 

  39. R. Bahri, H.P. Singh, Thin Solid Films 62, 291 (1979)

    CAS  Google Scholar 

  40. A.K. Roy, K. Prasad, A. Prasad, Process. Appl. Ceram. 7(2), 81 (2013)

    CAS  Google Scholar 

  41. S.A. Ahmed, Results Phys. 7, 604 (2017)

    Google Scholar 

  42. S. Abouelhassan, Chin. J. Phys. 48(5), 650 (2010)

    Google Scholar 

  43. G. Srinet, P. Varshney, R. Kumar, V. Sajal, P.K. Kulriya, M. Knobel, S.K. Sharma, Ceram. Int. 39, 6077 (2013)

    CAS  Google Scholar 

  44. N.F. Mott, E.A. Davis, Electronic Process in Non-Crystalline Materials, 2nd edn. (Oxford University Press, Oxford, 1979), p. 273

    Google Scholar 

  45. J. Tauc, in Optical Properties of Solid. ed. by A. Abeles (North Holland, Amsterdam, 1972), p. 277

    Google Scholar 

  46. F. Urbach, Phys. Rev. 92, 1324 (1953)

    CAS  Google Scholar 

  47. I.S. Yahia, A.A.M. Farag, M. Cavas, F. Yakuphanoglu, Superlatt. Microstruct. 53, 63 (2013)

    CAS  Google Scholar 

  48. M. Caglar, S. Ilican, Y. Caglar, F. Yakuphanoglu, Appl. Surf. Sci. 255, 4491 (2009)

    CAS  Google Scholar 

  49. H. Yoshikawa, S. Adachi, Jpn. J. Appl. Phys. 36, 6237 (1997)

    CAS  Google Scholar 

  50. A.A.M. Faraga, M. Cavas, F. Yakuphanogluc, F.M. Amanullahd, J. Alloys Compd. 509, 7900 (2011)

    Google Scholar 

  51. J. López, E. Solorio, H.A. Borbon-Nuñez, F.F. Castillón, R. Machorro, N. Nedev, M.H. Farías, H. Tiznado, J. Alloys Compd. 691, 308 (2017)

    Google Scholar 

  52. B.J. Zheng, J.S. Lian, L. Zhao, Q. Jiang, Appl. Surf. Sci. 253, 2910 (2010)

    Google Scholar 

Download references

Acknowledgements

Many thanks to Dr. A. Hassen, Professor of Materials Science, Physics Department, Faculty of Science, Fayoum University, 63514 El Fayoum, Egypt, for useful discussions and constant support during the performance of this work. Thanks also to Dr. A. S. Khalil and Mr.Sayed Ragab, Physics Department, Faculty of Science, Fayoum University, for their fast response to finish the FE-SEM images and EDX experiment in time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. El-Sayed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Baset, T., Saber, S. & El-Sayed, S. Dielectric relaxations and optical properties of Mn-doped ZnO nanoparticles. J Mater Sci: Mater Electron 31, 20972–20983 (2020). https://doi.org/10.1007/s10854-020-04611-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04611-0

Navigation