Skip to main content
Log in

Influence of graphene nanosheets addition on the microstructure, wettability, and mechanical properties of Sn-0.7Cu solder alloy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, Sn-0.7Cu composite solders with different weight of graphene nanosheets (GNSs) were successfully prepared by mechanical milling and hot-pressing sintering. The effects of GNSs on the microstructure, wettability, and mechanical properties of Sn-0.7Cu solder alloys were investigated. The experimental results indicate that the distribution density of GNSs in the solder matrix became larger as the content of the GNSs increased, and the GNSs basically distributed at the grain boundary. In addition, the grain size of the solder deceased firstly and then increased with increasing GNSs. Furthermore, the melting temperature of Sn-0.7Cu-xGNSs composite solders barely change compared with original Sn-0.7Cu solder. After Sn-0.7Cu-xGNSs, composite solders reflowed on Cu substrate at 250 °C for 20 min, and the experimental results reveal that the spread area and spread rate of composite solders on Cu substrate decreased with increasing content of GNSs. In addition, the mechanical properties of Sn-0.7Cu-xGNSs composite solders were obtained by tensile test. The tensile test results show that the yield strength and the ductility of composite solders both increased firstly and then decreased with addition of GNSs. In summary, the composite solders have best ductility and best yield strength when the content of GNSs is 0.05 wt% and 0.075 wt%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Q. Li, X. Liu, S. Lu, Corrosion behavior assessment of tin-lead and lead free solders exposed to fire smoke generated by burning polyvinyl chloride. Mater. Chem. Phys. 212, 298–307 (2018)

    Article  CAS  Google Scholar 

  2. H.W. Chiang, J.Y. Chen, M.C. Chen, J.C.B. Lee, G. Shiau, Reliability testing of WLCSP lead-free solder joints. J. Electron. Mater. 35, 1032–1040 (2006)

    Article  CAS  Google Scholar 

  3. J. Keller, D. Baither, U. Wilke, G. Schmitz, Mechanical properties of Pb-free SnAg solder joints. Acta Mater. 59, 2731–2741 (2011)

    Article  CAS  Google Scholar 

  4. T. Fujiwara, K. Yamamoto, H. Kimura, Quantification of lead-free solder fatigue by EBSD analysis. Microelectron. Reliab. 88–90, 691–694 (2018)

    Article  Google Scholar 

  5. R.M. Shalaby, M. Kamal, E.A.M. Ali, M.S. Gumaan, Microstructural and mechanical characterization of melt spun process Sn-3.5Ag and Sn-3.5Ag-xCu lead-free solders for low cost electronic assembly. Mater. Sci. Eng. A 690, 446–452 (2017)

    Article  Google Scholar 

  6. M.S. Gumaan, R.M. Shalaby, M.K. Mohammed Yousef, E.A.M. Ali, E.E. Abdel-Hady, Nickel effects on the structural and some physical properties of the eutectic Sn–Ag lead-free solder alloy. Solder. Surf. Mount Technol. 31, 40–51 (2019)

    Article  Google Scholar 

  7. E.A. Hammad, A.A. ElDaly, A.D. Fawzy Nasrallh, Microstructure, mechanical properties, and deformation behavior of Sn-1.0Ag-0.5Cu solder after Ni and Sb additions. Mater. Design 43, 40–49 (2013)

    Article  Google Scholar 

  8. X. Hu, T. Xu, L.M. Keer, Y. Li, X. Jiang, Shear strength and fracture behavior of reflowed Sn3.0Ag0.5Cu/Cu solder joints under various strain rates. J. Alloys Compd. 690, 720–729 (2017)

    Article  CAS  Google Scholar 

  9. M.M. Jubair, M.S. Gumaan, R.M. Shalaby, Reliable Sn–Ag–Cu lead-free melt-spun material required for high-performance applications. Zeitschrift für Kristallographie—Cryst. Mater. 234, 757 (2019)

    Article  CAS  Google Scholar 

  10. L.C. Tsao, M.W. Wu, S.Y. Chang, Effect of TiO2 nanoparticles on the microstructure and bonding strengths of Sn0.7Cu composite solder BGA packages with immersion Sn surface finish. J. Mater. Sci. Mater. Electron. 23, 681–687 (2012)

    Article  CAS  Google Scholar 

  11. Y. Lai, X. Hu, Y. Li, X. Jiang, Interfacial microstructure evolution and shear strength of Sn0.7Cu–xNi/Cu solder joints. J. Mater. Sci. Mater. Electron. 29, 11314–11324 (2018)

    Article  CAS  Google Scholar 

  12. Y. Lv, W. Yang, J. Mao, Y. Li, X. Zhang, Y. Zhan, Effect of graphene nano-sheets additions on the density, hardness, conductivity, and corrosion behavior of Sn–0.7Cu solder alloy. J. Mater. Sci. Mater. Electron. 31, 202–211 (2019)

    Article  Google Scholar 

  13. L.L. Dong, Q. Jin, X. Liu, M. Ahangarkani, C.H. Zheng, Y.S. Zhang, Experimental and theoretical analysis of the classification of Sn0.3Ag0.7Cu lead-free solders powder. Vacuum 156, 277–282 (2018)

    Article  CAS  Google Scholar 

  14. G. Zeng, S. Xue, Z. Liang, L. Gao, Z. Lai, J. Luo, Properties and microstructure of Sn–0.7Cu–0.05Ni solder bearing rare earth element Pr. J. Mater. Sci. Mater. Electron. 22, 1101–1108 (2011)

    Article  CAS  Google Scholar 

  15. Z. Liang, K.N. Tu, Structure and properties of lead-free solders bearing micro and nano particles. Mater. Sci. Eng. R Rep. 82, 1–32 (2014)

    Article  Google Scholar 

  16. G. Zeng, S. Xue, Z. Liang, L. Gao, Recent advances on Sn–Cu solders with alloying elements: review. J. Mater. Sci. Mater. Electron. 22, 565–578 (2011)

    Article  CAS  Google Scholar 

  17. M.I.I. Ramli, N. Saud, M.A.A.M. Salleh, M.N. Derman, R.M. Said, Effect of TiO2 additions on Sn-0.7Cu-0.05Ni lead-free composite solder. Microelectron. Reliab. 65, 255–264 (2016)

    Article  CAS  Google Scholar 

  18. D. Li, P.P. Conway, C. Liu, Corrosion characterization of tin–lead and lead free solders in 3.5wt% NaCl solution. Corros. Sci. 50, 995–1004 (2008)

    Article  CAS  Google Scholar 

  19. D.Q. Yu, J. Zhao, L. Wang, Improvement on the microstructure stability, mechanical and wetting properties of Sn–Ag–Cu lead-free solder with the addition of rare earth elements. J. Alloy. Compd. 376, 170–175 (2004)

    Article  CAS  Google Scholar 

  20. S.K. Das, A. Sharif, Y.C. Chan, N.B. Wong, W.K.C. Yung, Effect of Ag micro-particles content on the mechanical strength of the interface formed between Sn–Zn binary solder and Au/Ni/Cu bond pads. Microelectron. Eng. 86, 2086–2093 (2009)

    Article  CAS  Google Scholar 

  21. Y.F. Yan, J.H. Zhu, F.X. Chen, H.E. Jun-Guang, D.X. Yang, Creep behavior on Ag particle reinforced SnCu based composite solder joints. Trans. Nonferrous Metals Soc. China 16, 1116–1120 (2006)

    Article  Google Scholar 

  22. G. Li, Y. Shi, H. Hu, Z. Xia, Y. Lei, F. Guo, G. Li, Y. Shi, H. Hu, Z. Xia, Effect of phosphorus element on the comprehensive properties of Sn–Cu lead-free solder. J. Alloy. Compd. 491, 382–385 (2010)

    Article  CAS  Google Scholar 

  23. H. Mavoori, S. Jin, New, creep-resistant, low melting point solders with ultrafine oxide dispersions. J. Electron. Mater. 27, 1216–1222 (1998)

    Article  CAS  Google Scholar 

  24. A. Abtew, G. Selvaduray, Lead-free solders in microelectronics. Mater. Sci. Eng. R Rep. 27, 95–141 (2000)

    Article  Google Scholar 

  25. L.C. Tsao, C.H. Huang, C.H. Chung, R.S. Chen, Influence of TiO2 nanoparticles addition on the microstructural and mechanical properties of Sn0.7Cu nano-composite solder. Mater. Sci. Eng. A 545, 194–200 (2012)

    Article  CAS  Google Scholar 

  26. X.L. Zhong, M. Gupta, Development of lead-free Sn–0.7Cu/Al2O3 nanocomposite solders with superior strength. J. Phys. D Appl. Phys. 41, 095403 (2008)

    Article  Google Scholar 

  27. M.A.A.M. Salleh, A.M.M.A. Bakri, M.H. Zan@Hazizi, F. Somidin, N.F.M. Alui, Z.A. Ahmad, Mechanical properties of Sn–0.7Cu/Si3N4 lead-free composite solder. Mater. Sci. Eng. A 556, 633–637 (2012)

    Article  Google Scholar 

  28. Z. Moradi, M. Vaezzadeh, M. Saeidi, Temperature-dependent thermal expansion of graphene. Phys A 512, 981–985 (2018)

    Article  CAS  Google Scholar 

  29. Z. Yanwu, M. Shanthi, C. Weiwei, L. Xuesong, S.J. Won, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Cheminform 22, 3906–3924 (2010)

    Google Scholar 

  30. L. Nan, Z. Wang, K. Zhao, Z. Shi, Z. Gu, S. Xu, Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon 48, 255–259 (2010)

    Article  Google Scholar 

  31. M. Liu, Y. Duan, W. Yan, Z. Yan, Diazonium functionalization of graphene nanosheets and impact response of aniline modified graphene/bismaleimide nanocomposites. Mater. Des. 53, 466–474 (2014)

    Article  CAS  Google Scholar 

  32. A. Hosseinzadeh, S. Bidmeshkipour, Y. Abdi, E. Arzi, S. Mohajerzadeh, Graphene based strain sensors: a comparative study on graphene and its derivatives. Appl. Surf. Sci. 448, 71–77 (2018)

    Article  CAS  Google Scholar 

  33. B.H. Ryu, Y. Choi, H.S. Park, J.H. Byun, K. Kong, Synthesis of highly concentrated silver nanosol and its application to inkjet printing. Colloids Surf. A Physicochem. Eng. Asp. 270, 345–351 (2005)

    Article  Google Scholar 

  34. K.N. Tu, K. Zeng, Tin-lead (SnPb) solder reaction in flip chip technology. Mater. Sci. Eng. R Rep. 34, 1–58 (2001)

    Article  Google Scholar 

  35. L. Ji, Z. Tan, T. Kuykendall, E.J. An, Y. Fu, V. Battaglia, Y. Zhang, Multilayer nanoassembly of Sn-nanopillar arrays sandwiched between graphene layers for high-capacity lithium storage. Energy Environ. Sci. 4, 3611–3616 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work is supported by the National Natural Science Foundation of China (Grant Nos. 51761002, 51661001), the Guangxi Natural Science Foundation (Grant No. 2018GXNSFDA050008), the Training Plan of High Level Talents of Guangxi University (Grant No. 2015), Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials (Grant Nos. GXYSSF1807, GXYSOF1809), Guangxi Driving Innovation Project (Grant No. AA17204036-1), and Middle-aged and young teachers in college and universities in Guangxi basic ability promotion project (Grant No. 2018KY0038).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yitai Li or Yongzhong Zhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Lv, Y., Zhang, X. et al. Influence of graphene nanosheets addition on the microstructure, wettability, and mechanical properties of Sn-0.7Cu solder alloy. J Mater Sci: Mater Electron 31, 14035–14046 (2020). https://doi.org/10.1007/s10854-020-03920-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03920-8

Navigation